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Since Anfinsen demonstrated that the information encoded
in a protein’s amino acid sequence determines its structure in
1973, solving the protein structure prediction problem has
been the Holy Grail of structural biology. The goal of protein
structure prediction approaches is to utilize computational
modeling to determine the spatial location of every atom in a
protein molecule starting from only its amino acid sequence.
Depending on whether homologous structures can be found in
the Protein Data Bank (PDB), structure prediction methods
have been historically categorized as template-based modeling
(TBM) or template-free modeling (FM) approaches. Until
recently, TBM has been the most reliable approach to pre-
dicting protein structures, and in the absence of reliable tem-
plates, the modeling accuracy sharply declines. Nevertheless,
the results of the most recent community-wide assessment of
protein structure prediction experiment (CASP14) have
demonstrated that the protein structure prediction problem
can be largely solved through the use of end-to-end deep ma-
chine learning techniques, where correct folds could be built
for nearly all single-domain proteins without using the PDB
templates. Critically, the model quality exhibited little corre-
lation with the quality of available template structures, as well
as the number of sequence homologs detected for a given target
protein. Thus, the implementation of deep-learning techniques
has essentially broken through the 50-year-old modeling
border between TBM and FM approaches and has made the
success of high-resolution structure prediction significantly
less dependent on template availability in the PDB library.

Proteins are the macromolecules that are nearly ubiqui-
tously responsible for carrying out the various functions
necessary to sustain life, from cell structural support, immune
protection, enzymatic catalysis, cell signal transduction to
transcription and translation regulation. These diverse func-
tions are made possible by the unique three-dimensional
structures adopted by different protein molecules. The land-
mark study by Anfinsen in the 1970s showed that the tertiary
structure of a protein is dependent on its amino acid sequence
(1). Since then, understanding the protein sequence–struc-
ture–function paradigm has become a cornerstone of modern
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biomedical studies. Due to significant efforts in genome
sequencing over the last 4 decades (2–4), the number of
known nucleotide sequences in the GenBank database (5) has
grown to over 2600 million as of 2021. Of these nucleotide
sequences, approximately 200 million have been translated
into the corresponding amino acid sequences and deposited in
UniProt (6). Despite the impressive accumulation of data, the
amino acid sequences themselves provide only limited insight
into the biological functions of each protein, as these are
essentially determined by their three-dimensional structures.
An interesting exception to this are intrinsically disordered
proteins, which have been estimated to make up roughly 30%
of proteins in the human proteome, and may be functional
despite lacking well-defined tertiary structures (7). However,
even intrinsically disordered proteins may undergo
disordered-to-ordered transitions and adopt tertiary structures
upon binding to their partners and performing their biological
functions (8, 9).

Among the most accurate experimental methods for deter-
mining the structures of proteins are X-ray crystallography (10),
NMR spectroscopy (11), and cryo-electron microscopy (12).
However, due to the significant human effort and expenses
required to experimentally solve a protein structure, the growth
in the number of solved protein structures has lagged far behind
the accumulation of protein sequences. So far, the structures of
approximately 0.18 million proteins have been deposited in the
Protein Data Bank (13) (PDB), which accounts for less than 0.1%
of the total sequences in the UniProt database (14). This per-
centage was 0.7% in 2010 and 2% in 2004; therefore, it is
apparent that the gap between the number of known protein
sequences and experimentally solved protein structures is
continually widening. Thanks to the tremendous effort made by
the community over the last few decades (15–29), an increasing
portion of the genes in organisms have had their tertiary
structures reliably modeled by computational approaches
(30–36). In addition, numerous high-quality structural models
are being created every day by online structure prediction sys-
tems (22, 23, 27, 29, 37–43), which have been used to assist
various biomedical studies, including structure-based protein
function annotation (44–48), mutation analysis (49–56), ligand
screening (57–64), and drug discovery (65–70). Thus, the
development of high-accuracy protein structure prediction
methodologies represents perhaps the most promising, yet
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challenging, approach to address the disparity between the
number of known protein sequences and experimentally solved
structures, while also elucidating the fundamental principles
that govern the protein sequence-to-structure-to-function
paradigm.

Historically, protein structure prediction approaches have
been generally categorized as either template-based modeling
(TBM) or template-free modeling (FM) methods. TBM
methods construct models by copying and refining the struc-
tural frameworks of existing proteins, called templates, iden-
tified from the PDB, while FM methods predict protein
structures without using global template structures. The ac-
curacy of TBM is contingent on the quality of the alignments
between the target protein and the identified templates, which
is often dependent on the evolutionary distances between the
query and templates. For proteins with sequence identities (SI)
>50% to the templates, for example, models produced by TBM
can have up to 1 Å RMSD from the native structure for the
backbone atoms. For proteins with 30 to 50% SI, the models
often have ~85% of the core regions within an RMSD of 2 to
5 Å to the native structure. However, when the SI drops <30%
(the Twilight Zone) (71), modeling accuracy sharply decreases
due to alignment errors and the lack of significant template
hits (72–74). Despite this drop-off in accuracy, in theory, the
protein structure prediction problem could be solved using
TBM even at a stringent sequence identity cutoff (<25%) if
algorithms were able to identify the best templates from the
PDB library (75). Nevertheless, this has yet to be achieved in
practice due to the difficulty and error in recognizing distantly
homologous templates (76).

Unlike TBM methods, FM methods have been traditionally
used to model proteins for which no homologous templates
can be identified from the PDB library. Since FM methods do
not use global template information, they traditionally rely on
physics- and/or knowledge-based energy functions and
extensive sampling procedures to construct protein structure
models and therefore often have been referred to as ab initio
or de novo modeling approaches (21, 23). Due to the inherent
inaccuracies associated with these procedures, FM has not
historically achieved the same accuracy as TBM. However,
recently the field has witnessed a remarkable achievement in
that, for the first time, the gap between the TBM and FM
accuracies has largely been bridged through the use of deep
learning, in particular end-to-end learning, to build protein
structure models (27, 28, 77, 78). This strategy resulted in the
construction of experimental quality structures by the top
performing group, AlphaFold2 (77), for approximately 35% of
proteins that lacked significant homologous templates in the
PDB and 77% of proteins with homologous templates in the
most recent community-wide blind test of protein structure
prediction approaches, compared with an average of 0% and
20%, respectively, in the previous three assessment rounds
(79–82). In this review, we will start with an overview of the
history of protein structure prediction, followed by a discus-
sion of the recent progress and challenges covering the state of
the art of the field. In particular, we will highlight the profound
impact brought about by deep learning, where the
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breakthrough in end-to-end learning has largely solved the
single-domain protein structure prediction problem (83).

As a supplemental aid, Table 1 lists links to the discussed
methods so that readers may access these useful resources, and
Figure 1 provides an overview of the important achievements
and milestones over the last 50 years that are covered in this
review. The selection of the lists can be subjective and limited
by the space of the article.
An overview of the history of protein structure
prediction

TBM—homology modeling

The first published attempt at TBM, and protein structure
prediction in general, can be traced back to 1969 when Browne
et al. (84) built a model for bovine alpha-lactalbumin using the
structural framework obtained from the experimentally solved
hen egg-white lysozyme. The hypothesis that drove the study,
which has since become a crucial component of TBM, was that
since the two proteins shared high sequence homology, they
should also be structurally similar. Using this hypothesis, the
authors first manually aligned the sequences of both proteins
in order to maximize the homology between the two.
Following alignment, the authors built a wire skeletal model
for hen egg-white lysozyme, whose structure was experimen-
tally determined and then modified it to accommodate the
sequence of bovine alpha-lactalbumin, copying the aligned
regions and modifying the local structure of the unaligned
regions. Although this early attempt utilized a rudimentary
approach, it illustrates the four key steps of TBM methods: (1)
identification of experimentally solved proteins (templates)
related to the protein to be modeled, (2) alignment of the
protein of interest and the templates, (3) construction of the
initial structural framework by copying the aligned regions,
and (4) construction of the unaligned regions and refinement
of the structure.

The case highlighted above for bovine alpha-lactalbumin
falls under a special category of TBM called homology
modeling or comparative modeling, which typically can be
used when the sequence identity between the template and
protein of interest is high (e.g., ≥30%). This makes it signifi-
cantly easier to identify high-quality templates and produce
reliable alignments using simple sequence–sequence align-
ment algorithms. Such algorithms include well-established
methods developed in the 1970s and 1980s that utilize dy-
namic programming, such as the Needleman–Wunsch algo-
rithm (85) for global alignment and the Smith–Waterman
algorithm (86) for local alignment. In addition to relatively
slow dynamic programming-based methods, rapid sequence–
sequence alignments can be obtained using the popular
BLAST software (87), which was developed in 1990 and works
by first heuristically identifying short matches between the
query and template and then attempting to extend these
matches to obtain alignments. Once the template and protein
of interest have been aligned, the next step is to construct a
model by copying and refining the template’s structure. One
early approach for constructing homology models that was



Table 1
List of the useful methods for protein structure prediction covered in
this review with available links to access the resources

Multiple sequence alignment (MSA) construction
PSI-BLAST https://blast.ncbi.nlm.nih.gov/Blast.cgi
HHBlits Web server- https://toolkit.tuebingen.mpg.de/tools/

hhblits
Downloadable version -https://github.com/soedinglab/

hh-suite
Jackhmmer https://www.ebi.ac.uk/Tools/hmmer/search/jackhmmer
Hmmsearch https://www.ebi.ac.uk/Tools/hmmer/search/hmmsearch
DeepMSA https://zhanglab.ccmb.med.umich.edu/DeepMSA/

Threading and Fold-recognition
LOMETS https://zhanglab.dcmb.med.umich.edu/LOMETS/
HHsearch https://github.com/soedinglab/hh-suite
MUSTER https://zhanglab.dcmb.med.umich.edu/MUSTER/
map_align https://github.com/sokrypton/map_align
EigenTHREADER https://github.com/psipred/eigenthreader
CEthreader https://zhanglab.dcmb.med.umich.edu/CEthreader/
DisCovER https://github.com/Bhattacharya-Lab/DisCovER
RaptorX http://raptorx.uchicago.edu

Full-length Structure Assembly for Template-Based Modeling (TBM)
I-TASSER https://zhanglab.dcmb.med.umich.edu/I-TASSER/
MODELLER https://salilab.org/modeller/
RosettaCM https://www.rosettacommons.org/software/license-and-

download
SWISS-MODEL https://swissmodel.expasy.org/
Phyre2 http://www.sbg.bio.ic.ac.uk/phyre2/

Fragment Assembly Simulation Methods for Free Modeling (FM)
Rosetta Web server: https://robetta.bakerlab.org

Downloadable version: https://www.rosettacommons.
org/software/license-and-download

QUARK https://zhanglab.dcmb.med.umich.edu/QUARK/
FragFold https://github.com/psipred/fragfold

Co-evolution and Deep Learning-Based Contact/Distance Prediction
PSICOV http://bioinfadmin.cs.ucl.ac.uk/downloads/PSICOV/
CCMpred https://github.com/soedinglab/CCMpred
GREMLIN http://gremlin.bakerlab.org
NeBcon https://zhanglab.dcmb.med.umich.edu/NeBcon/
MetaPSICOV http://bioinf.cs.ucl.ac.uk/psipred/
ResPRE https://zhanglab.dcmb.med.umich.edu/ResPRE/
TripletRes https://zhanglab.ccmb.med.umich.edu/TripletRes/
RaptorX-Contact http://raptorx.uchicago.edu/ContactMap/
MSA Transformer https://github.com/facebookresearch/esm

Deep Learning-Based Full-length Structure Prediction
AlphaFold https://github.com/deepmind/
D-I-TASSER https://zhanglab.dcmb.med.umich.edu/D-I-TASSER/
D-QUARK https://zhanglab.dcmb.med.umich.edu/D-QUARK/
trRosetta https://yanglab.nankai.edu.cn/trRosetta/
DMPfold Web server - http://bioinf.cs.ucl.ac.uk/psipred/

Downloadable version https://github.com/psipred/
DMPfold
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published in 1993 and has remained popular to the present day
is MODELLER (20). MODELLER builds tertiary structure
models by optimally satisfying the spatial constraints taken
from the template alignments as well as other general struc-
tural constraints such as ideal bond lengths, bond angles, and
dihedral angles. Figure 2 depicts the main steps involved in a
homology modeling approach.

TBM—threading

The accuracy of homology-based TBM sharply declines on
average when the sequence identity between the best available
template and the target protein is <30%. Therefore, more
advanced alignment approaches beyond simple sequence–
sequence-based methods are necessary to identify and obtain
accurate template alignments for these cases. In 1991, Bowie
et al. (18) published their seminal paper that directly addressed
this problem by matching 1D sequences to 3D template
structures, which has since launched a major research field in
the broader domain of TBM known as “threading” or “fold
recognition.” The hypothesis that drove the work by Bowie
et al. was that the 3D structure of a template could be
decomposed into a 1D profile of local structural features,
which should be more conserved than the amino acid identi-
ties themselves and could be used to identify and align proteins
with similar structures but more distant sequence homology.
Along these lines, the authors categorized each template po-
sition into different environmental classes based on the
buried/exposed surface area and local secondary structure at a
position and then derived a score for finding each amino acid
in the different environmental classes. Finally, they integrated
these scores into a dynamic programming algorithm to obtain
more accurate query-template alignments for distantly ho-
mologous proteins.

Another strategy for identifying distantly related proteins
was published in 1997 and extended the BLAST methodology
to PSI-BLAST (88). PSI-BLAST works by first constructing a
multiple sequence alignment (MSA) using sequences detected
by a BLAST search. This alignment is then converted into a
position-specific score matrix (PSSM), which captures the
amino acid tendencies at each position of the MSA and is used
in place of the query sequence to iteratively search through a
sequence database a prespecified number of times using an
algorithm that is similar to that of BLAST. After each step, the
profile or PSSM is updated to reflect the sequences detected in
the previous round. Thus, the idea behind PSI-BLAST is to
iteratively search a database using profiles, which more fully
represent the sequence space compatible with a given protein
fold, in order to detect more distantly related proteins. Besides
PSSMs, sequence profiles may be represented using profile
Hidden Markov Models (HMMs). Here, a profile HMM is a
probabilistic model that encapsulates the evolutionary changes
in an MSA. The advantage of using profile HMMs is that they
use position specific gap penalties and substitution probabili-
ties, which more closely represents the true underlying
sequence distribution (89). Profile HMMs were introduced in
structural bioinformatics in 1994 (90) and have remained one
of the most effective methods for identifying templates and
constructing MSAs (89, 91, 92).

Most current threading algorithms combine the ideas
behind both the approach of Bowie et al. and PSI-BLAST by
using local structural features, either predicted for the protein
of interest or derived from templates, and sequence profiles,
represented by PSSMs or HMMs, to identify distantly ho-
mologous templates for a given protein sequence (91, 93, 94).
In addition, the most recent progress in the field is to integrate
contact and distance predictions into dynamic programming-
based threading methods to improve the ability of distant-
homology template recognition (95, 96), which will be dis-
cussed later. Furthermore, meta-threading approaches such as
3D-Jury (97) and, more recently, LOMETS (98, 99) combine
the templates output by multiple threading programs into a set
of consensus templates. While rigorous theoretical studies to
explain the consistent improvement brought about by
combining multiple structures were not available until many
years later (100), the intuition behind the usage of multiple
threading templates is simple. Since there are many more ways
J. Biol. Chem. (2021) 297(1) 100870 3
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Figure 1. Important milestones in protein structure prediction that are covered in this review.
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Figure 2. Typical steps in a homology-based modeling pipeline. Starting from a query sequence, templates are identified using sequence-based
alignment algorithms. Then the structural framework of the best template alignment is copied, and the unaligned regions are constructed to produce
the final model.
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for threading to get incorrect alignments than to get a correct
alignment, it is much easier to get a consensus correct align-
ment than multiple consistent but incorrect alignments (101).

TBM—building tertiary structure models from threading
templates

While threading may be used to identify templates for a
protein of interest, the output of such programs is an align-
ment between the query protein and the threading templates,
which in and of itself does not provide a 3D model. Therefore,
it is necessary to use methods that are capable of converting
threading alignments to 3D models in order for the informa-
tion to be useful. Moreover, the identification of less reliable
templates for nonhomology modeling targets makes the con-
struction of 3D models more difficult, necessitating more
effective protein structure prediction algorithms that are
capable of fixing alignment errors and large alignment gaps.
Here, it is worth noting that many homology modeling ap-
proaches today also start from templates identified by
threading approaches and use more sophisticated model
construction techniques than simple homology methods. One
successful strategy for modeling distant-homology protein
targets is TASSER (32). Developed in the early 2000s, TASSER
extracts contiguous fragments from the threading aligned re-
gions of multiple threading templates, which are then reas-
sembled during its structure assembly simulations. For
computational efficiency, the unaligned regions are assembled
using a lattice-based FM approach. In addition to constraints
from template alignments, TASSER also incorporates several
knowledge-based energy terms important for protein folding
(e.g., hydrogen bonding, secondary structure formation, side-
chain contact formation, etc.) to guide its parallel hyperbolic
Monte Carlo simulations (102). Following the simulations,
low-energy decoys are clustered based on their structural
similarity, and the largest cluster centroid is selected for
additional full-atom refinement. The key reason for the suc-
cess of TASSER is its effective combination of multiple tem-
plates (20–50) and its optimized simulation strategy that
combines efficient conformational movements with an effec-
tive knowledge and template-based energy function.

More recently developed TBM approaches such as
I-TASSER (22, 24, 103), RosettaCM (104), and Phyre2 (105)
also combine constraints from multiple templates. For
example, I-TASSER, which is an extension of TASSER, uses
multiple templates identified by LOMETS; compared with
TASSER, the main difference of I-TASSER is that, following
clustering of the low-energy decoys and selection of the cluster
centroid, the centroid is searched through the PDB library to
identify additional templates. Constraints from these tem-
plates, the cluster model, and the threading templates are
combined with the inherent knowledge-based potential to
guide a second round of structure assembly simulations.
J. Biol. Chem. (2021) 297(1) 100870 5
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Following this, the lowest energy structure is selected and
subjected to full-atom refinement. Since its introduction in
CASP7, I-TASSER has been consistently ranked as the top
automated protein structure prediction server, where it was
one of the first methods to regularly demonstrate the ability to
draw template structures closer to the native structure. Here,
CASP is the community-wide blind modeling experiment to
determine the state of the art in protein structure prediction,
which has taken place every other year since 1994 (106). The
motivation for establishing the experiment was to provide an
objective means of evaluating the state of the field and
measuring the performance of various proteins structure
prediction approaches. Before the introduction of I-TASSER in
CASP7, the CASP assessors concluded, “We are forced to draw
the disappointing conclusion that, similarly to what [was]
observed in previous editions of the experiment, no model
resulted to be closer to the target structure than the template
to any significant extent” (107) and “Sad notes are once again
those regarding the poor performance in predicting features
not directly inheritable from the parent and in obtaining a
model that is closer to the native structure than the template
used to build it” (107). Thus, the ability to draw template
structures closer to the native represents a significant
achievement and a solution to one of the classical problems in
TBM. Figure 3 depicts the main steps involved in a generic
threading-based protein structure prediction algorithm.

One factor that may or may not be considered by threading
approaches is the resolution of the templates themselves, which
is a measure of how closely the experimental structures match
the native structures. For example, programs such as LOMETS
search a nonredundant structure library that consists of tem-
plates of varying resolutions obtained by methods including
X-ray crystallography, electron microscopy, and NMR
Figure 3. Typical steps in template/fragment assembly and gradient desc
sequence, a multiple sequence alignment (MSA) is constructed by identifying
predicted structural features derived from the MSA, either global template stru
solved protein structures. Additionally, coevolutionary analysis of the MSA is fe
maps, interresidue orientations, and hydrogen bond networks. The structure
structure, or directly minimize the structure using rapid gradient descent me
formations generated during the structure assembly stage or by identifying
refinement simulations to produce a final model.
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spectroscopy. Since the vast majority of the structures in the
PDB were determined by X-ray crystallography (~88%), fol-
lowed by NMR (~7.5%), and then electron microscopy (~4.3%),
the most frequently used templates are those determined by X-
ray crystallography, which also typically have better resolutions
than NMR and electron microscopy structures. The templates
are then ranked according to the query-template alignment
scores obtained by the component threading programs, without
regard to the resolution of the selected templates. However, it
must be noted that the experimental resolution of structures in
the PDB is in general high-quality compared with many pre-
dicted models, especially those that lack close homologous
templates, where only approximately 1.5% of PDB structures
have resolutions worse than 4.6 Å and around 42% have reso-
lutions better than 2 Å. Nevertheless, for homology modeling
studies, it is important to select higher-resolution templates
when multiple structures are solved using different techniques
by different laboratories for the same protein, as the final
structures closely match the initial templates.

As the success of TBM relies on the availability of PDB
templates, the average quality of the TBM models varies
depending on the type of protein being modeled. For example,
given the difficulty in determining the crystal structures of
certain classes of protein, such as GPCRs (or membrane pro-
teins more generally) and proteins with disordered regions,
some structures may be more difficult to model by TBM as
fewer templates are available (108, 109). To help partially
overcome this, specialized methods have been designed to
predict structures for these classes of proteins (110, 111).

FM—molecular dynamics

FM protein structure prediction methods generate models
without using global template structures. These approaches
ent-based protein structure prediction pipelines. Starting from a query
homologous sequences from a sequence database. Then using profiles or
ctures (for TBM) or local fragments (for FM) are identified from databases of
d into deep neural networks to predict pairwise restraints such as distance
assembly stage may either assembly the local fragments, global template
thods. From here, the final model may be selected by clustering the con-
the lowest energy structure, which is further refined using atomic-level
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typically try to find the lowest energy conformation for a
protein structure using an energy function that accounts for
forces that are fundamental to protein folding, as, based on
Anfisen’s thermodynamic hypothesis (1), the native structure
of a protein should be its lowest free energy conformation. The
earliest attempts at FM were implemented to refine the atomic
structures produced by X-ray diffraction experiments in order
to improve their physical characteristics. For example, the
method by Levitt et al. (112) published in 1969 combined an
energy function that accounted for typical bond length, bond
angle, and dihedral angle values as well as the van der Waals
interactions and restraints taken from experimental structures
with a steepest descent-based minimization procedure to
refine the X-ray structure of lysozyme and myoglobin. A
similar energy function was used in 1977 by Karplus’ group to
study the dynamics of the bovine pancreatic trypsin inhibitor
(17). The authors used a molecular dynamics approach to
study the motion of the protein, where the goal of molecular
dynamics is to solve Newton’s second law for all atoms in a
system over a given time period to determine their motion.
Since then, various molecular dynamics force fields and
packages have been developed including AMBER (113–115),
CHARMM (116–118), OPLS (119, 120), and GROMOS96
(121). Despite their different parameterizations, all of these
potentials bear a resemblance to the original potential devel-
oped by Levitt et al. in 1969 in terms of their functional forms.
Although molecular dynamics is useful for refining the atomic
structures of proteins, it is very difficult to apply it to predict a
protein structure starting from sequence. This is perhaps best
illustrated by the fact that the first successful molecular
dynamics-based protein structure prediction was generated in
1998 by Duan and Kollman for the very small villin headpiece
subdomain (36 amino acids), which took 2 months CPU time
to simulate using a massively parallel supercomputer and
achieved an accuracy of 4.5 Å (115). Since then, technology has
progressed through the use of more advanced computer ar-
chitectures (122, 123) and force fields (124–130), but molec-
ular dynamics-based structure prediction still remains
impractical for proteins of typical length. Nevertheless, mo-
lecular dynamics has remained a popular tool to study protein
motion (128, 131) and for full-atom refinement of protein
structures (132–134).

FM—fragment assembly

Besides molecular dynamics-based methods, many current
FM approaches use fragment assembly, an idea pioneered by
Bowie and Eisenberg in 1994 (135). The implementation by
Bowie and Eisenberg generated a mixture of fragments with
fixed (nine residues) and variable lengths (15–25 residues)
from a database of known 3D structures. Fragments were
chosen based on their compatibility to the sequence of the
protein they wanted to model, where compatibility was
assessed using the profile-based threading method developed
earlier by Bowie et al. These fragments were then used to
assemble full-length structural models for small alpha-helical
proteins. The authors found that this fragment assembly
procedure reduced the conformational search space, while
ensuring that the local structures of the assembled fragments
were well formed. Following the idea of Bowie and Eisenberg,
Baker’s group developed the Rosetta modeling software in
1997 (21), which has remained one of the most widely used
FM methods to this day. In Rosetta (136), three and nine
residues fragments are scored based on the profile-profile and
secondary structure similarity between the query sequence and
fragments over a selected window size. The main conforma-
tional move is fragment insertion, where the backbone torsion
angles of the predicted conformation are swapped for those of
one of the high scoring fragments during a simulated
annealing Monte Carlo simulation. Structures are represented
using a course-grained model that explicitly models all back-
bone atoms and the side-chain centers of mass. A centroid
energy function is employed to guide the simulated annealing
Monte Carlo simulation, which includes terms that account
for important factors in protein folding such as helix-strand
packing, strand pairing, solvation, van der Waals in-
teractions, radius of gyration, strand arrangement into sheets,
and residue pair interactions. Conformations generated during
the simulation with favorable local interactions and protein-
like global properties are clustered based on their structural
similarity, and the final structure is typically derived from the
largest cluster center. Apart from the Rosetta, additional FM
predictors, such as QUARK (23) and FragFold (137), were
developed by other groups based on a similar idea of fragment
assembly using variants of Monte Carlo simulations, but with
different approaches for fragment generation and energy
function design. For example, QUARK includes a distance-
based profile energy term, which estimates and constrains
the distance between two residues based on the interresidue
distances of fragments taken from the same PDB structures.
Moreover, QUARK includes a set of 11 different conforma-
tional movements in addition to the fragment replacement
movement, making the conformational sampling procedure
more efficient. Since Rosetta’s introduction in CASP3 and
QUARK’s introduction in CASP9, they have been consistently
ranked among the top FM approaches. Figure 3 depicts the
main steps involved in a generic fragment assembly-based FM
approach.

FM—rapid gradient descent-based folding methods

While fragment assembly represents one successful
approach used by FM methods, the drawback is that the
simulations may take several hours to days depending on the
length of the protein. Therefore, it is desirable to develop
methods that are capable of generating structures rapidly. This
can be achieved using gradient descent-based folding methods.
One limitation of such approaches, however, is that they may
be prone to becoming trapped in local minima, as opposed to
finding the conformation that lies at the global minimum of
the energy distribution. This is particularly true when the
energy landscape is complex, which is the case in protein
folding. Recently, this problem has been addressed through the
accurate prediction of pairwise spatial restraints, such as
J. Biol. Chem. (2021) 297(1) 100870 7
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interresidue distances, using deep learning, which can smooth
the energy landscape and allow gradient-based methods to
accurately fold protein structures (29). In CASP13, the first
iteration of AlphaFold was able to achieve state-of-the-art
performance using a gradient descent-based folding
approach (28). Interestingly, they found that the performance
of their gradient descent-based pipeline was faster than and
achieved similar performance as their fragment assembly
approach. Furthermore, trRosetta, the latest iteration of the
Rosetta modeling software, uses an L-BFGS gradient descent
approach to rapidly fold protein structures and demonstrated
that high-accuracy predictions may be achieved even with
rapid simulations due to accurate deep learning-based re-
straints (29). Figure 3 depicts the main steps involved in a
generic gradient descent-based FM approach. Here, a critical
characteristic for the gradient descent search to work properly
is the high number of deep learning-based distance and
orientation restraints (typically >20–50L, where L is the target
length) that can simplify and smooth the energy landscape so
that the global minimum can be readily recovered even with
local conformational searching. For the cases with no or sparse
spatial restraints, more advanced structural assembly and
conformational searching approaches have been proven to be
necessary due to the roughness of the physics- and knowledge-
based energy landscapes (21, 23, 138).
Pairwise spatial restraint prediction

The use of deep learning techniques to predict pairwise
spatial restraints has become a major area of research in the
Figure 4. Interresidue spatial restraints that are often used to assist protei
the N, Cα, and C atoms, while the side chains include the Cβ atoms, with the e
amino acid residues. A, Cα/Cβ contacts and distances; B, interresidue torsion an
represented using a Cα-based model, where three consecutive Cα atoms form
represent regular hydrogen bonding patterns observed in native proteins. D,
sequence of a target protein, homologous protein sequences are collected from
(MSA). For the MSA, coevolutionary relationships are deduced and fed into a de
interresidue orientations, and hydrogen bond networks.
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field. This is because the tertiary structures of proteins are
formed and stabilized by interactions between the atoms that
make up each residue, and prediction of these interactions
provides extremely useful information that can guide protein
folding approaches. Perhaps the most commonly predicted
interactions are those between Cβ atoms from different resi-
dues. In general, two residues are considered to form a contact
if the distance between their Cβ atoms (Cα for glycine) is <8 Å,
where an illustration of contacts/distances in protein structure
prediction is depicted in Figure 4A. Here, a contact map for a
protein with length L is a symmetric, binary L × L matrix,
where each element of the matrix is a binary value that in-
dicates if the residues form a contact or not. The concept
behind distance maps is similar, but they provide more
detailed information on the interactions. Instead of simply
predicting if two residues are in contact or not, distance map
prediction attempts to directly predict the distance between
two atoms from different residues, typically the Cβ atoms or Cα

atoms for glycine. In practice, most distance map predictors do
not predict the exact distance between residues, but the
probability that the distance falls within a certain range.
Although inclusion of contact and distance maps predicted
using deep learning has recently transformed the field of
protein structure prediction, the prediction of residue–residue
contacts/distances is not a new idea.

Beginning in the 1990s, attempts were made to predict the
residue–residue contacts for a protein based on correlated
mutations in MSAs (139–141). The hypothesis behind the
approach was that if mutations that occur at two positions are
correlated, they are more likely to form a contact in 3D space;
n 3D structure assembly simulations. The protein backbone atoms include
xception of glycine, as well as the R groups, which distinguish the different
gles; C, hydrogen bond networks. Here, the backbone hydrogen bonds are
a local coordinate system, from which various vectors and their orientations
typical pipeline for spatial restraint prediction. Starting from the amino acid
sequence databases and compiled to form a multiple sequence alignment
ep neural network, which may output the predicted contact/distance maps,
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this is because there is evolutionary pressure to conserve the
structures of proteins. Therefore, a mutation at one position
along the sequence that may result in structural instability
could be rescued by a corresponding mutation in a residue that
is in contact with the mutated residue. As a result, it would be
expected that residue pairs that are in contact would exhibit
correlated mutation patterns, also known as coevolution. In
practice, however, the accuracy of early covariation-based
approaches was limited by the inability to distinguish be-
tween direct and indirect interactions. An indirect interaction
may occur when position A forms a direct contact with posi-
tion B and B forms a direct contact with position C; even if A
does not directly contact C, coevolution may still be observed
between positions A and C. This is because a mutation at
position A may cause a mutation at position B, which in turn
could result in a compensatory mutation at position C, thus
appearing as if positions A and C coevolve. Further restrictions
were imposed by the limited size of the sequence databases
used to construct MSAs and the lack of sophisticated MSA
construction methods.

Improving contact prediction through the use of global
statistical models

The inability to distinguish between direct and indirect
interactions remained a significant challenge until contact
prediction algorithms began using global prediction ap-
proaches. The first contact prediction methods considered
one residue pair at a time using techniques such as mutual
information (141), thus ignoring the interactions with other
residue pairs and the global context in which the interactions
took place. The introduction of global statistical models
determined through the use of direct coupling analysis (DCA)
was much more successfully able to distinguish between
direct and indirect interactions (142, 143). The improved
performance of DCA over mutual information and other
related methods is due to the fact that DCA simultaneously
considers the full set of pairwise interactions, instead of
considering residues one at a time. A widely used DCA
method is to fit a Markov random field (MRF), or more
specifically a Potts model, to an MSA using message passing
(142), Gaussian approximation (144), mean-field approxima-
tion (143), or pseudo-likelihood maximization (145–147).
Here, an MRF model represents each column of an MSA as a
node, where the determined edge weights between each node
can be used to infer contacts between each position. Other
popular methods include estimation of the inverse covariance
matrix, also known as the precision matrix, from an MSA
using L1 regularization, as introduced by PSICOV (148), or
L2 regularization, as introduced by ResPRE (149). Network
deconvolution has also been used to determine contacts from
coevolutionary data (150).

Contact map prediction using shallow machine learning
approaches

While the use of DCA represents a promising avenue to
improve contact prediction accuracy, another approach is to
leverage machine learning to predict the interresidue contacts
and distances. In fact, the use of machine learning in contact
prediction dates back as far as simple covariation-based
techniques. Early machine learning methods utilized shallow,
fully connected neural networks, whose inputs included fea-
tures such as correlated mutation data, secondary structure,
and sequence conservation information (151, 152). Here, the
distinction between shallow and deep neural networks is pri-
marily based on the number of hidden layers in the network,
where shallow networks have few hidden layers. These early
machine-learning-based predictors achieved comparable or
slightly better accuracies than the contemporaneous methods
based solely on analysis of correlated mutations. Following the
first iteration of machine-learning-based contact predictors,
more complex neural network architectures were developed
(153–156). Furthermore, contact prediction methods based on
other machine learning techniques such as support vector
machines (SVMs), including SVMSEQ (157) and SVMcon
(158), or random forest models, including PconsC (159),
achieved success by extracting a large number of features for a
target protein sequence and then applying SVMs/random
forests to solve the classification problem. Success was also
reported by meta-methods such as MetaPSICOV (160) and
NeBcon (161), which combined the output of multiple DCA
methods using shallow neural networks and could outperform
the best individual component programs.
Contact map prediction using deep neural networks

In the early 2010s, predictors began to incorporate deep
learning architectures into their prediction methods. The first
of these included CMAPpro (162), which used a 2D recursive
neural network, and DNCON (163), which used a deep belief
network. Such networks achieved accuracies similar to or
better than other state-of-the-art predictors at the time, such
as SVMcon and PSICOV, but the accuracies were still rela-
tively low; in fact, early deep learning approaches could not
outperform MetaPSICOV, a shallow neural network approach
trained on multiple DCA predictors. Part of the reason for the
suboptimal performance of these deep learning networks was
that contacts for pairs of residues were predicted using fea-
tures extracted only from a small window of residues around
the target residue pair. This sliding window approach ignores
the global context of the residue pairs, therefore not realizing
the true potential of deep learning.

A breakthrough came in 2017 when Xu’s group proposed
RaptorX-Contact (26), which reformulated the contact pre-
diction problem through the introduction of deep residual
convolutional neural networks (ResNets (164)), where a
representative pipeline for deep learning-based spatial restraint
prediction is shown in Figure 4D. Here, a residual neural
network is a convolutional neural network that adds an identity
map of the input to the output of the convolutional layer,
allowing gradients to flow smoothly from deeper to shallower
layers and enabling the training of deep networks with many
layers. Under this framework, the contact map prediction
problem is considered an image segmentation task, i.e., a
J. Biol. Chem. (2021) 297(1) 100870 9
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pixel-level labeling problem, where the whole contact map is
an image in which each residue pair corresponds to a pixel.
Image segmentation is a task for which ResNets, originally
developed for computer vision, have demonstrated excellent
performance. While the features used by RaptorX-Contact,
such as coevolutionary information obtained through DCA,
predicted secondary structures, and PSSMs, are quite similar to
other predictors, the introduction of deep ResNets with
approximately 60 hidden layers enabled RaptorX-Contact to
dramatically outperform other methods. The demonstrated
power of ResNets has inspired the vast majority of top ranked
methods (165–167) developed since CASP12 to incorporate
them into their architectures. One particularly successful
method in CASP13, TripletRes (168, 169), used a similar
ResNet basic block for its deep learning architecture but with a
triplet of coevolutionary matrices. Instead of using the post-
processed L × L evolutionary coupling information utilized by
other predictors, TripletRes directly used the 21 × 21 × L × L
raw coupling parameters as an input feature to its network,
where 21 is the number of amino acid types (plus one type for
gaps). The usefulness of deep learning-based contact map
prediction was clearly demonstrated by C-I-TASSER and C-
QUARK in CASP13, which were ranked as the first and second
best automated servers in CASP13, respectively (27). C-I-
TASSER and C-QUARK were extensions of the classic I-
TASSER and QUARK frameworks, which included contact
maps from TripletRes, ResPRE, and numerous deep learning-
based predictors into their simulations. These deep learning
restraints were found to greatly improve the modeling accu-
racy, especially for targets without readily identifiable template
structures (27).

Distance map prediction using deep learning

A natural extension of contact map prediction is distance
map prediction. The difference between the two is that contact
map prediction involves binary classification, while distance
map prediction typically involves multiclass classification. In
other words, instead of predicting if two residues form a
contact or not, distance map prediction typically predicts the
probability that the distance between residues falls into one of
many different bins (even though attempts have been made to
directly predict the real-value distances (170)). We note that
the idea of distance prediction is not new; QUARK (171), for
example, includes distance predictions derived from fragments
detected from templates. Yet, the implementation of distance
prediction in a deep learning framework is a recent advance-
ment and makes the prediction much more robust and suc-
cessful even in the absence of analogous structural templates.
Distance map prediction jumped to the forefront of the field
during the CASP13 experiment in 2018, when three predictors
(RaptorX-Contact (43), DMPfold (172), and AlphaFold (173)),
extended the use of deep ResNets for contact prediction to
distance prediction. Of these predictors, AlphaFold achieved
the best performance in tertiary structure modeling, as it was
ranked as the top human group in CASP13. Starting from the
coevolutionary coupling information obtained from an MSA,
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AlphaFold utilized a very deep residual neural network
composed of 220 residual blocks to predict the distance map
for a target sequence, which was then used to assemble protein
models.

In CASP14, distance map prediction was prevalent among
the top predictors and has replaced contact map prediction to
a large extent as the information encoded in distance maps is
much richer than that in binary contact maps. Top distance
map prediction approaches that participated in the contact
prediction section of CASP14 include DeepPotential (174) and
tFold (175). Here, it is important to note that contact maps can
be obtained from distance maps by collapsing the predicted
distance maps into binary matrices, thus allowing them to be
assessed in contact map prediction. DeepPotential used a deep
ResNet composed of 50 2D residual blocks to simultaneously
predict pairwise distance maps, interresidue orientations, and
hydrogen bond networks (Fig. 4). Interestingly it was found
that training on multiple features such as interresidue dis-
tances and orientations, which are discussed in the next sec-
tion, improved the distance map prediction performance.
Similarly, tFold also predicted pairwise distances and orienta-
tions using a deep ResNet. However, tFold’s network was
composed of more than ten times the number of layers of
DeepPotential, with 600 residual blocks, and utilized a 2D
attention mechanism. Of note, the developers found that the
utilization of 600 layers was able to improve the performance
slightly, suggesting that there is a steep diminishing return on
investment when adding additional layers. Although it did not
participate in the contact prediction section of CASP14,
another successful distance map prediction approach was
trRosetta, which was developed before the CASP experiment
and uses a deep ResNet to predict both pairwise distances and
orientations (29).

Interresidue orientation and hydrogen bond network
prediction using deep learning

A further extension of distance prediction is interresidue
torsion angle orientation prediction. It has been known for
years that knowledge-based energy functions that are depen-
dent only on residue-residue distances are often not as accu-
rate as those that use both residue–residue distances and
orientations for protein structure prediction (176–178). The
importance of orientation-dependent energy functions is
twofold: biologically, certain types of residue–residue in-
teractions require not only distance proximity but also specific
orientations between the residue pairs, e.g., beta strand pairing;
mathematically, it is impossible to uniquely determine the
geometry of a structure without torsion angle information, as
distance information alone cannot differentiate a pair of
mirrored structures. Given the importance of interresidue
orientations, a number of structure prediction approaches
have incorporated them into their pipelines. For example,
NEMO used deep learning to simultaneously predict pairwise
distance maps, interresidue orientations, and dihedral angles
for a given sequence (179). Interestingly, they incorporated
these into an end-to-end learning approach, which directly
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generated structures using machine learning as opposed to
incorporating these restraints into gradient descent or Monte
Carlo–based folding simulations.

More recently, trRosetta (29) has popularized orientation
prediction by using a deep residual neural network to predict
both pairwise residue distances and interresidue orientations
from coevolutionary information (Fig. 4B). In CASP14, many
of the top groups, including Rosetta (180), D-I-TASSER (181),
and D-QUARK (182), utilized orientation and distance re-
straints predicted by deep residual neural networks. In addi-
tion, the top CASP14 server group, D-I-TASSER, also used
DeepPotential’s residual neural network to predict hydrogen
bond networks (Fig. 4C) and incorporated the hydrogen-
bonding restraints into its structural assembly simulations.
The deep learning-based hydrogen bond network prediction
was found to significantly improve the modeling accuracy on
CASP14 targets, especially for those target that lacked ho-
mologous templates (181).

Incorporating metagenomic sequence data into prediction
approaches

Another limitation of the early-stage contact prediction
approaches was the small number of homologous sequences
that could be used to construct MSAs for a distant-homology
target. DCA methods in particular, and deep learning ap-
proaches to a lesser extent, rely on collecting a sufficient
number of homologous sequences in an MSA, as the more
homologous sequences there are, the more reliable the derived
coevolutionary information is. Fortunately, the implementa-
tion of DCA and deep learning contact/distance prediction has
coincided with the expansion of sequence databases, in
particular metagenomics sequence databases. Metagenomics is
the application of next-generation shotgun sequencing tech-
niques to sequence the DNA collected from environmental
samples. These DNA sequences can be translated to protein
sequences automatically, thereby producing large databases
with billions of protein sequences. The utility of metagenomics
sequences in contact-assisted structure prediction was first
demonstrated for GREMLIN/Rosetta (25) by significantly
enhancing the number of effective sequences in an MSA, thus
producing “deep” MSAs with diverse sequences for DCA.
Later MSA construction methods (183, 184) confirmed the
usefulness of metagenome-derived MSAs for improving con-
tact prediction (168, 183, 184), threading results for distantly
homologous targets (99, 184), and the ability to model proteins
that belong to families with unknown structures (25, 185).

As a side effect of the rapid accumulation of metagenome
data for protein structure prediction, comprehensive sequence
database search, and MSA collection has become increasingly
infeasible due to both computer speed and memory limita-
tions. Peng et al. (186) recently utilized 2.4 TB of the micro-
biome sequencing data, representing 4.25 billion microbiome
sequences and covering four major biomes (gut, lake, soil, and
fermentor), to investigate the inherent link between the
microbiome niches and their homologous protein families.
Their study showed that an MSA searched from an individual
biome that is predicted to be most closely linked with the
target protein family could result in more accurate contact
map prediction and 3D models with higher TM scores,
compared with those collected from the combined meta-
genome samples. This is in spite of the fact that the former
used a much smaller metagenome sample with significantly
less CPU memory costs than the latter. The rationale lies in the
assumption that accurate evolutionary information should be
derived from MSAs collected from evolutionarily close
genome samples, while the involvement of irrelevant genome
samples, although increasing the volume of homologous se-
quences, can introduce “noise” into the MSA collection and
the subsequent contact and distance map prediction proced-
ures. This result provides a promising avenue to curtail the
extremely high-volume sequence database search requirement
for high-quality structure prediction by using a targeted
approach built on the linkage between microbiomes and a
target protein’s homologous families.

Identifying threading templates by contact/distance map-
guided threading approaches

Apart from their direct use as restraints to guide protein
assembly simulations, contact and distance maps can be used by
threading approaches to identify structural templates for a query
sequence. In fact, contact and distance map-guided threading
approaches represent the state of the art in fold recognition,
achieving superior accuracy to traditional profile or local
structural feature-based threading approaches (95, 96, 187).
This is in part because correct contact and distance maps
provide a clear description of a protein’s global fold and may be
predicted for a query sequence with high accuracy using deep
learning or obtained from the native template structures.
However, aligning two contact maps is a nontrivial problem,
and various methods have been developed to address this crit-
ical issue. Among them, EigenTHREADER (96) uses eigen
decomposition of contact maps to obtain the top eigenvectors,
then the template and query contact maps may be aligned by
aligning their principal eigenvectors. CEthreader uses a similar
eigen decomposition strategy but goes beyond pure contact
map-based threading approaches, incorporating information
from both local structural feature prediction and sequence-
based profiles (95). Furthermore, map_align (25) proposed an
iterative double dynamic programming algorithm to align
contact maps, while DeepThreader (187) uses predicted dis-
tance maps and the ADMM algorithm to obtain alignments.
More recently, DisCovER (188) incorporated deep learning-
based distance and orientation prediction into their threading
approach, along with a topological network that includes in-
formation from neighboring residues, ultimately obtaining
alignments using an iterative double dynamic programming
framework. One drawback to contact and distance map-guided
threading approaches is that they tend to be more computa-
tionally demanding, mainly because the interresidue contact/
distance maps involve two-body information that cannot be
directly integrated in the dynamic programming or hidden
Markov models that require single-body potentials. A typical
J. Biol. Chem. (2021) 297(1) 100870 11
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strategy used to overcome this is to first identify a certain
number of top templates using rapid profile-based threading
methods. Then the identified templates may be realigned using
the contact and distance map-based approaches, thus reducing
the number of costly alignments that must be performed (95).

Unsupervised contact map prediction using transformers

Although MRF models or Potts models have been shown to
be useful for predicting pairwise spatial restraints, they are not
without their drawbacks. One very critical drawback is their
dependence on identifying a relatively large number of ho-
mologous sequences in order to ascertain coevolutionary re-
lationships in an MSA. Although deep residual neural networks
have partially alleviated this issue, the problem remains as there
still exists a considerable correlation between the number of
effective sequences (Neff) in an MSA and the prediction accu-
racy. Additionally, MRF models are essentially a human-
engineered feature used by most deep learning approaches,
which somewhat violates a key aspect of deep learning in that
the networks themselves should extract useful features.

Recently, exciting progress has beenwitnessed inunsupervised
contact prediction using self-attention-based deep learning ar-
chitectures called transformers. Transformers are a novel ma-
chine learning architecture that was introduced in 2017 and have
significantly impacted the field of natural language processing,
outperforming recurrent and convolutional networks (189).
Briefly, transformers pass inputs through a series of self-attention
and feedforward connections, which allow the network to attend
to relevant information from the input and build up complex
representations that incorporate long-range dependencies. Rives
et al. (190) first applied transformers to contact prediction by
training a transformermodel to recovermasked amino acid types
for 86 billion residues from 250 million protein sequences.
Although the model was not specifically trained to predict con-
tact maps, they can be deduced from the information encoded in
thefinal hidden representation learned by the transformermodel.
Thus, using this approach, contact maps may be predicted in an
unsupervised manner, allowing training on protein for which no
structural information is available.

The single sequence model was recently extended to MSAs,
outperforming current state-of-the-art methods such as
trRosetta on contact prediction (191). Of particular interest is
the improvement in performance for targets with MSAs
composed of few effective sequences, which have traditionally
been more difficult prediction targets as determining coevo-
lutionary information using MRF models requires many se-
quences in an MSA. This is similar to what was observed in
CASP14 by AlphaFold2 (77), which also used self-attention to
arbitrarily attend to sequences from an MSA and pick up
relevant information in the Trunk section of their network.
The goal of the novel transformer architecture introduced by
AlphaFold2 is to treat the protein structure prediction prob-
lem as a graph inference problem, where residues that are
close together in 3D space define the edges of the graph using
both a pairwise and MSA representation. Here, the pairwise
representation is used to represent the spatial proximity of
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each pairwise interaction between residues and the MSA
representation encodes the evolutionary information from the
detected sequence homologs. The AlphaFold2 Trunk network
consists of multiple blocks, where at the beginning of each
transformer block, the MSA representation is processed using
multiple self-attention layers, and the attention mechanism is
biased by the pairwise representation to ensure proper
communication and consistency between the two. Then the
processed MSA representation is in turn used to update the
pairwise representation. Since the pairwise interactions or
edges must satisfy the triangle inequality in accordance with
the properties of protein structures, the pairwise representa-
tion is updated using a triangle self-attention and updating
scheme that considers a triangle of edges formed by three
residues. The final model quality produced by AlphaFold2
exhibited almost no correlation to the number of effective
sequences in the MSAs by DeepMSA (184) (Fig. 5A),
demonstrating that the problem of low prediction accuracy for
targets with few effective sequences may be partially addressed
through self-attention-based neural networks, at least based on
the MSAs collected from a third-party program.

End-to-end structure prediction using deep learning

First attempts at end-to-end folding

While many successful methods to date have focused on
predicting pairwise structural features and incorporating them
into structure assembly simulations, the ideal approach to
solving the structure prediction problem would be to directly
learn the 3D structures of proteins starting from their amino
acid sequences, the so-called “end-to-end” learning approach.
This would remove the need for advanced folding simulations
and instead allow deep neural networks to directly produce 3D
structures. One of the first attempts at end-to-end deep
learning-based structure prediction used recurrent geometric
networks to build protein models by predicting the backbone
torsion angles for each residue (192). Here, it is important to
note that protein structures can be described in terms of the
Cartesian coordinates of all of the atoms that make up each
amino acid residue or in torsion angle space, assuming ideal
bond lengths and bond angles. Representing a protein confor-
mation by its torsion angles allows for the prediction and
optimization of significantly fewer parameters. In addition,
Cartesian coordinates are more difficult to predict using ma-
chine learning as rotating or translating a structure will result in
significantly different coordinates for the same protein struc-
ture. Thus, a representation that is not dependent on arbitrary
translation or rotation is needed to achieve self-consistency,
which is why the method used the torsion angle representa-
tion of protein structure. A drawback of the torsion angle
representation is, however, that any small error at a local residue
may result in a big RMSD error for the global structure. The
deep neural network was made up of stacked long short-term
memory (LSTM) units that received position specific amino
acid and PSSM information along with information from other
upstream and downstream LSTM units. The output of the
network was the predicted backbone torsion angles for each



Figure 5. Summary of contact map prediction results in CASP11 to 14. A, contact prediction results for different groups on all FM and FM/TBM targets.
Groups are sorted in descending order of the average precision of their top L/5 long-range contacts, where L is the protein length and long-range contacts
occur between positions that are separated by at least 24 residues. B, relationship between contact prediction precision and the MSA Neff value obtained by
the DeepMSA program (184), where lines are the best fit on the individual targets by linear regression.
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residue. From these predicted torsion angles, the backbone
structure can be built directly one residue at a time from the N
to C-terminal by converting from torsion angle space to Car-
tesian space using simple geometric functions.

While this may be one of the first claims of end-to-end
learning, the idea is similar to predicting the backbone tor-
sion angles for a given query sequence, which is a long-
standing idea in the field (193). One of the key differences,
apart from the neural network architecture, is that the loss
function for training took into account the deviation between
the predicted and native structures as opposed to just the error
in the torsion angle prediction. Nevertheless, the method
performed poorly in CASP13, suggesting that direct prediction
of torsion angles alone may not be a robust method for con-
structing tertiary structure models. This is in part because
torsion angles are essentially local features and may not
accurately capture long-range information that is critical in
structure modeling and small errors in the predicted torsion
angles can result in large structural deviations downstream due
to lever-arm effects. In fact, AlphaFold used a similar end-to-
end network to generate protein structures based on torsion
angle prediction in CASP13 and found that indeed the long-
range interactions were poorly formed by such networks
(173). Ultimately, they used the network to produce short
structural fragments, which were then assembled using a dis-
tance map-guided fragment assembly approach.

Another method for end-to-end folding that was developed
at around the same time as the recurrent geometric network
approach is NEMO (179). NEMO uses a combination of 1D,
2D, and graph convolutions to predict interresidue distances,
orientations, and dihedral angles and utilizes Langevin dy-
namics to generate models based on these predicted features.
Thus, the approach represented the protein conformation by a
combination of the backbone dihedral angles as well as the
interresidue distances and orientations. Here it is important to
note that similar to the torsion angle representation, a protein
structure can be described in a manner that is independent of
translation or rotation in 3D space by the full pairwise distance
maps, with the exception of mirror image structures. Despite
the unique approach, the method was outperformed by more
traditional protein folding approaches that used deep learning-
based restraints. However, the realization of end-to-end training
for protein structure prediction was achieved in CASP14 by the
second iteration of AlphaFold, AlphaFold2, which attained
remarkable modeling accuracy and has largely solved the single-
domain protein structure prediction problem (83).

End-to-end folding in CASP14 by AlphaFold2

The breakthrough achieved by AlphaFold2 can be in part
attributed to their unique end-to-end learning approach,
which replaced traditional folding simulations with 3D
equivariant transformers (77). The AlphaFold2 structure
modeling network consists of two main parts: the Trunk sec-
tion, which is responsible for processing the input data
including the query sequence, templates, and MSA, and the
Structure (or Head) Module, which is responsible for directly
mapping 3D structures from the training elements (77). The
Trunk section of the network is briefly explained in the
J. Biol. Chem. (2021) 297(1) 100870 13
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section. More specifically, the main building blocks of the
Trunk section are self-attention transformers, which process
the MSA and pairwise representations using self-attention
networks, where the MSA representation is initialized from
the raw MSAs detected from the sequence database searches
and the pairwise representation is initialized from the target
sequence and pairwise template features derived from the top
templates detected by HHsearch. The pairwise representation
output from multiple transformer blocks is then fed into the
Structure Module along with the row in the MSA represen-
tation that corresponds to the original target sequence, which
is referred to as the single representation. The Structure
Module represents 3D structures using a gas of 3D rigid body
frames. Here, a rigid body frame describes the rotation and
translation of each residue, where the rotation of the backbone
atoms is accounted for by the three backbone torsion angles
(Φ, ψ, and ω) and the rotation of the side-chain atoms is
specified with the side-chain torsion angles (χ1−4). In addition
to the torsion angles, the network produces predictions for the
translation vectors of each frame. For the backbone frames,
which consist of the N-Cα-C atoms, the translation vectors are
predicted for the Cα atoms, while for the side-chain frames,
the translation vectors are predicted for the carbon atoms
immediately following each of the side-chain torsion angles
(χ1−4). Given the predicted translation vectors and the full set
of backbone and side-chain torsion angles, the exact 3D
structures can be quickly mapped using simple geometric
transformations, assuming ideal bond lengths and bond angles.

Along with the pairwise and single representations, the
Structure Module takes as input the backbone structure
frames, either from those predicted by a previous pass through
the network or with translation vectors initialized to the origin
and rotations set to the identity if it is the first pass through the
network. This iterative process of recycling the output back
through the Trunk and Structure Modules allows for continual
refinement of predicted structures and enables the network to
achieve very high accuracy. The Structure Module augments
each of the attention queries, keys, and values from the
transformer architecture with 3D points produced in the local
frame of each residue, which allows the final values to be
invariant to global rotations and translations. Another feature
of the Structure Module is that it does not constrain the
Table 2
Summary of the current state-of-the-art structure prediction methods,
web server URL addresses

Method
CASP14 group

name CASP14 resultsa

D-I-
TASSER

Zhang-Server First Place Server Template and dee
bond network-g

D-QUARK QUARK Second Place Server Deep learning dis
QUARK/

AlphaFold2 AlphaFold2 First Place Human Group End-to-end deep
Rosetta BAKER Second Place Human

Group
Deep learning dis
trRosetta Server: h

a Methods in CASP are divided into server and human groups. Predictions by server gro
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peptide bonds and allows the network to break the protein
chain constraints in order to refine all parts of the protein
structure simultaneously. In addition to the backbone frames,
the side-chain frames and the estimated residue-level errors
are predicted using small per-residue networks based on the
final activations at the end of the network. This novel network
architecture construction enables an efficient end-to-end
training protocol, which is built on the comparison between
the predicted and true atom positions, and achieved excep-
tional structure modeling accuracy, as will be discussed in the
next section.
Impact of deep learning on structure modeling
accuracy

The community-wide CASP experiments provide an objec-
tive method to benchmark the state of the art of protein struc-
ture prediction with different categories for both tertiary
structure modeling and contact prediction. As such, the prog-
ress made in the field should be best highlighted by reviewing
the results of the most recent CASP experiment (CASP14),
which took place in 2020, in comparison to previous CASP
experiments. Starting from CASP7, the proteins modeled dur-
ing CASP have been classified as TBM, TBM-easy, TBM-hard,
FM/TBM, or FM depending on the availability and quality of
PDB templates for each target, where TBM-easy targets have
readily identifiable, high-quality templates and FM targets
typically lack homologous templates in the PDB. For the pur-
pose of our analysis in the following sections, TBM, TBM-easy,
TBM-hard, and FM/TBM targets are all regarded as TBM tar-
gets, and FM targets are treated separately. In CASP, predictions
are produced by both server groups and human groups. Server
groups must deploy fully automated pipelines and submit their
result within 72 h while remaining completely blinded to other
groups’ predictions. On the other hand, Human groups are
given 2 weeks for most modeling targets to allow for more hu-
man intervention, such as drawing insights from the final sub-
mission of server groups. Due to the longer computational times
provided and the full knowledge of the results of all server
groups, human groups often perform better than server groups
using similar algorithms. In Table 2, we list the top performing
groups in CASP14 with available online servers or source code
so that readers may access their resources.
including their results in the most recent CASP experiment and their

Description; URL address

p learning distance/orientation/hydrogen
uided folding; https://zhanglab.dcmb.med.umich.edu/D-I-TASSER/
tance/orientation-guided folding; https://zhanglab.dcmb.med.umich.edu/D-

learning-based model prediction; https://github.com/deepmind/
tance/orientation-guided folding; Robetta Server: https://robetta.bakerlab.org
ttps://yanglab.nankai.edu.cn/trRosetta/

ups are fully automated, whereas those by human groups do not have to be.

https://zhanglab.dcmb.med.umich.edu/D-I-TASSER/
https://zhanglab.dcmb.med.umich.edu/D-QUARK/
https://zhanglab.dcmb.med.umich.edu/D-QUARK/
https://github.com/deepmind/
https://robetta.bakerlab.org
https://yanglab.nankai.edu.cn/trRosetta/
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Improving contact prediction accuracy using deep learning

The most notable development in recent CASP experiments
is the employment of deep learning strategies, in particular the
incorporation of contact and distance maps derived from deep
learning into structure prediction programs. CASP has not
introduced a category for distance map prediction, but it does
have a contact map prediction competition. In addition, con-
tact maps can be derived from distance maps by collapsing
them into two bins.

Figure 5A highlights the progress made in contact predic-
tion accuracy over the previous four CASP experiments. The
figure shows that a dramatic increase in contact prediction
accuracy can be seen not only for the top predictors, but also
across the board. The average precision of the top L/5 long-
range contacts, where L is the protein length and long-range
indicates contacts between positions separated by at least 24
residues, for the best predictor increased from 26.7% in
CASP11 to 74.4% in CASP13. Therefore, remarkably, from
2014 to 2018, the contact prediction precision nearly tripled as
a result of the development of contact predictors that utilize
deep residual neural networks starting from coevolutionary
data.

While in CASP14 the average precision of the best predictor
was 75.1%, which was similar to the best CASP13 predictor,
the dependency on the number of effective sequences in an
MSA shown in Figure 5B significantly decreased from CASP13
to CASP14. This is critical progress as most deep learning-
based contact/distance map prediction methods utilize
coevolutionary features, which require MSAs with many se-
quences in order to reliably ascertain the coevolutionary
couplings between each position. This can be clearly seen in
the results for CASP11 and CASP12 in Figure 5B, where the
contact prediction accuracy was very low when few sequences
were available. Thus, the small increase in accuracy between
CASP13 and CASP14 may be attributed to the presence of
more difficult modeling targets, where deep learning clearly
decreases the number of sequences necessary to successfully
predict residues that are in contact with each other. Further-
more, a marked increase in accuracy can be observed for the
remainder of the predictors in CASP14 as compared with
CASP13.
Improving tertiary structure modeling using deep learning

Traditionally, the most reliable method for predicting
protein structures has been to use TBM approaches, which
rely on identifying homologous templates from the PDB li-
brary in order to model a target sequence. Thus, the accu-
racy of such TBM approaches is highly dependent on the
ability to identify high-quality templates from the PDB li-
brary, where the modeling accuracy sharply declines when
only low-quality templates are able to be identified. In the-
ory, FM approaches are not limited by the availability of
templates in the PDB library, but they have traditionally been
outperformed by TBM methods, especially for targets with
readily identifiable templates in the PDB. Nevertheless, the
incorporation of predicted pairwise restraints from deep
learning, and more recently end-to-end learning, into FM
approaches has shown promise to close the accuracy gap
between TBM and FM methods.

Figure 6B shows the results from previous CASP experi-
ments as well as the most recent experiment on FM and TBM
targets in terms of the mean TM score of the best first sub-
mitted model for each target. Here, TM score is a sequence
length-independent metric that ranges from [0, 1], where a
score >0.5 indicates that the predicted and native structure
shares the same global topology and a score >0.914 may be
used as a cutoff for low-to-medium resolution experimental
accuracy (194, 195). From the plot, it can be seen that the gap
in modeling accuracy between FM and TBM targets has nar-
rowed as the field has advanced. In particular, the improve-
ment in FM model quality may be attributed to the use of deep
learning restraints and end-to-end learning, as in the absence
of suitable template structures, deep learning may be used to
guide the structure assembly simulations. In CASP7, the mean
TM score for FM and TBM targets was 0.38 and 0.80,
respectively, which resulted in a TM-score gap of 0.42.
CASP11 saw the gap slightly narrow to 0.35 with a mean TM
score equal to 0.47 and 0.82 for FM and TBM targets,
respectively. However, as seen in Figure 5A, the contact map
prediction accuracy was not high enough to make a profound
impact on modeling accuracy. As the contact map prediction
accuracy improved in CASP12, the FM modeling accuracy also
improved to 0.56, while the TBM accuracy remained at 0.81.

As noted in the previous section, CASP13 witnessed a
remarkable improvement in contact prediction accuracy due
to the use of deep ResNets. Correspondingly, the FM modeling
accuracy improved to a mean TM score of 0.65 and the TBM
accuracy improved slightly to 0.83, which narrowed the TM-
score gap to 0.18. For CASP14, we considered two groups
separately: CASP14 without AlphaFold2 models and CASP14
only considering the AlphaFold2 models. Besides AlphaFold2,
the top predictors in CASP14 utilized pairwise restraints such
as interresidue distances, orientations, and hydrogen bond
networks to guide their folding simulations. Therefore,
without considering AlphaFold2, the FM modeling accuracy
increased to 0.69 and the TBMmodeling accuracy increased to
0.84, corresponding to a mean TM-score gap of 0.15. It is
interesting to note that there were considerably more FM
targets in CASP14 that had few sequence homologs (low Neff,
Fig. 5B) than in CASP13. This indicates that the CASP14 FM
targets were in general more difficult than the CASP13 FM
targets, so the results may have been more significant when
tested on a similar subset of proteins. Lastly, AlphaFold2 by
itself was able to produce extremely accurate predictions with
a mean TM score of 0.84 for FM targets and 0.93 for TBM
targets (corresponding to a TM-score gap of 0.09). Thus,
AlphaFold2 was able to generate FM predictions with accu-
racies comparable to TBM models generated by other groups,
and their models for TBM targets had an average accuracy
comparable to low-to-medium resolution experimental
structures. Interestingly, we still see a gap in CASP14, albeit a
significantly smaller one than observed in previous CASPs,
between the modeling accuracy of FM and TBM targets, with a
J. Biol. Chem. (2021) 297(1) 100870 15



Figure 6. Summary of structure prediction results in the recent CASP experiments. A, relationship between the best TM score of the first submitted
model and the Neff value of the MSA generated by the DeepMSA program (184). B, mean TM score of the best first TBM and FM models submitted in the
corresponding CASP competitions. C, results for the best first TBM models (including TBM, TBM-easy, TBMA-hard, and FM/TBM) submitted by any group in
CASP7/11 to 14, where the models are categorized into one of three categories based on their TM scores: [0, 0.5), [0.5, 0.914], (0.914, 1.0]. D, results for the
best first FM models submitted by any group in CASP7/11 to 14, where the models are categorized into one of three categories based on their TM scores: [0,
0.5), [0.5, 0.914], (0.914, 1.0].
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p-value of 8.9E-5 as determined by a two-tailed Student’s t test.
Nevertheless, the 50-year-old gap between FM and TBM
modeling accuracies has largely been bridged through the use
of deep learning, where solving the protein structure
16 J. Biol. Chem. (2021) 297(1) 100870
prediction problem may no longer rely on direct identification
of global templates from the PDB library.

Deep learning has not only largely closed the gap between the
accuracy of TBM and FM approaches, it has also drastically



Table 3
Summary of AlphaFold2’s modeling performance on CASP14 multi-
domain targets and each constituent domain

Target Domain (length) TM-score

T1038 Full Length (L = 190) 0.92
Domain 1 (L = 114) 0.90
Domain 2 (L = 76) 0.91

T1047s2 Full Length (L = 346) 0.77
Domain 1 (L = 147) 0.96
Domain 2 (L = 83) 0.93
Domain 3 (L = 116) 0.62

T1052 Full Length (L = 832) 0.69
Domain 1 (L = 539) 0.96
Domain 2 (L = 213) 0.99
Domain 3 (L = 80) 0.98

T1053 Full Length (L = 576) 0.97
Domain 1 (L = 405) 0.99
Domain 2 (L = 171) 0.95

T1058 Full Length (L = 382) 0.96
Domain 1 (L = 221) 0.94
Domain 2 (L = 161) 0.96

T1061 Full Length (L = 838) 0.77
Domain 1 (L = 464) 0.93
Domain 2 (L = 271) 0.81
Domain 3 (L = 103) 0.95

T1070 Full Length (L = 321) 0.49
Domain 1 (L = 76) 0.62
Domain 2 (L = 101) 0.97
Domain 3 (L = 76) 0.78
Domain 4 (L = 68) 0.95

T1085 Full Length (L = 406) 0.94
Domain 1 (L = 167) 0.95
Domain 2 (L = 182) 0.98
Domain 3 (L = 57) 0.83

T1086 Full Length (L = 381) 0.94
Domain 1 (L = 193) 0.96
Domain 2 (L = 188) 0.96

T1093 Full Length (L = 629) 0.94
Domain 1 (L = 141) 0.88
Domain 2 (L = 382) 0.95
Domain 3 (L = 106) 0.93

T1094 Full Length (L = 484) 0.91
Domain 1 (L = 277) 0.87
Domain 2 (L = 207) 0.96

T1096 Full Length (L = 426) 0.56
Domain 1 (L = 255) 0.94
Domain 2 (L = 171) 0.85

Average Full Length (L = 484.3) 0.82
Domains (L = 187.5) 0.91
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improved the modeling accuracy for targets with few homolo-
gous sequences. From Figure 5B, we can see the reliance on the
number of sequences in an MSA dramatically decreased from
CASP12 to CASP13 with the use of deep ResNets, which in turn
improved the modeling accuracy for low Neff targets. In
CASP14, AlphaFold2’s final model quality was almost
completely independent of the MSA Neff value, which is a truly
remarkable achievement (Fig. 6A). From Figure 6C, we can also
see a marked increase in the number of models produced with
experimental accuracy (when considering a cutoff TM score of
0.914). In previous CASP experiments, no FM targets could be
folded with such high accuracy, but in CASP14, AlphaFold2 was
able to fold more than 1/3 of the FM targets with experimental
accuracy and almost 80% of the TBM targets.

As a note, although the gap between TBM and FM accuracies
has been largely reduced and most of the structure prediction
studies have focused on distant-homology modeling, in which
close homologous templates must be excluded to facilitate
benchmark testing and comparisons with other methods, both
traditional TBM/FM and modern deep learning methods rely
essentially on the experimentally solved structures and are
therefore impacted by the increase in the number of structures
in the PDB. First, the newly solved experimental structures can
provide close homologous templates for more sequences to
facilitate high-resolution TBM structure modeling. Second, a
larger set of PDB structures contain more comprehensive fold
types, which can facilitate the development of more robust
knowledge-based statistical force fields and machine learning
models for FM. In this context, despite the significant progress
in structural bioinformatics, the effort from the experimental
structural biology community has been andwill continue to be a
fundamental driving force to further improve the accuracy of
computational protein structure prediction.

Conclusion and future directions

The prediction of protein structures starting from amino acid
sequences has remained an outstanding problem in structural
biology since Anfisen first demonstrated that the information
encoded in a protein sequence determines its structure. Now
more than ever, there is an urgent need to develop high-accuracy
protein structure prediction algorithms, as advancements in
high-throughput sequencing technology have greatly exacer-
bated the gap between the number of known protein sequences
and the number of experimentally determined structures. Until
recently, the most reliable approach for solving the protein
structure prediction problem has been to identify and refine the
structural frameworks of templates detected from the PDB. This
template-based modeling approach works well when homolo-
gous templates can be readily detected, but the accuracy sharply
declines when only distantly homologous templates exist for a
target. Furthermore, traditional template-free modeling ap-
proaches have only been able to consistently and accurately fold
relatively small non-beta proteins due to compounding in-
adequacies in the energy functions and conformational sampling
techniques used by such approaches. Until recently, for some
time, progress in the field has been slow and only incremental
gains have been achieved. Nevertheless, the most recent
advancements in deep learning-based restraint prediction and
end-to-end folding have revolutionized the field of protein
structure prediction, greatly improving its accuracy and the
ability to fold proteins that lack homologous templates in the
PDB.Moreover, the results of the most recent CASP experiment
best highlight the progress made in the field, where the use of
end-to-end learning and attention-based networks by Alpha-
Fold2 has largely solved the protein structure prediction problem
at the domain level.

Despite the impressive achievement, there still exists some
room for improvement. For example, while the gap between
FM and TBM modeling accuracies has been dramatically
reduced, there still exists some disparity between the two types
of targets as roughly 80% of the TBM targets could be folded
with experimental accuracy by AlphaFold2, while only 35% of
the FM targets achieved the same accuracy. Moreover, CASP
assesses the performance of predictors on single-domain tar-
gets, thus AlphaFold2’s performance on more complex mul-
tiple domain targets remains unknown, although individual
examples with remarkable modeling accuracy have been wit-
nessed for multidomain protein targets in CASP14. Table 3
J. Biol. Chem. (2021) 297(1) 100870 17



Figure 7. Representative examples of AlphaFold2 on multidomain protein structures in CASP14. The experimental structures are shown in red
cartoons, while the predicted models are shown in different colors for different domains. A, modeling results for T1038, where AlphaFold2 achieved
excellent performance on both the domain-level and full-length models. B, modeling results for T1052, where the domain-level models achieved an
extremely high accuracy, but the full-length assembled structure had incorrect domain orientations.

JBC REVIEWS: Solution to the problem of protein structure prediction
lists the TM scores for 12 CASP14 multidomain proteins for
which at least one domain belonged to an FM target and the
full-chain structures were released. For these examples, the
average TM score of the assembled full-length proteins was
0.82 compared with 0.91 for each individual domain model. In
Figure 7, we list two representative models from targets T1038
and T1052 produced by AlphaFold2. T1038 was composed of
two domains that were both FM targets, where the TM scores
for the models constructed by AlphaFold2 for domains 1 and 2
were 0.90 and 0.91, respectively, and the full-length model
achieved a TM score of 0.92. Thus, AlphaFold2 was able to
generate highly accurate domain-level and full-length models.
Of particular interest, the next best group only achieved a TM
score of 0.43 for the full-length model and a TM score of 0.48
and 0.66 for domains 1 and 2, respectively. This case illustrates
the exceptional performance of AlphaFold2 at generating
models, particularly for targets that could not be folded by any
other group. For T1052, however, the full-length model was
significantly worse than the individual domain models. Here,
target T1052 was composed of three domains, where Alpha-
Fold2 modeled each individual domain with very high accu-
racy, achieving TM scores of 0.96, 0.99, and 0.98 for domains 1
to 3, respectively; however, the full-length model was much
worse with a TM score of 0.69. Thus, although AlphaFold2
achieved remarkable success in modeling multidomain struc-
tures, the full-length modeling accuracy appears to be worse
on average than that for the constituent domains; this shows
the necessity of further effort on interdomain orientation
modeling for protein structure prediction.

Additionally, as many proteins perform their function
through interactions with other proteins in a cell, the
extension of end-to-end learning to the prediction of protein
complex structures and assemblies remains an open problem.
18 J. Biol. Chem. (2021) 297(1) 100870
Another interesting dilemma to consider is that AlphaFold2
was trained on experimentally solved structures, where the
most prominent method for structure determination is X-ray
crystallography. Since X-ray crystallography involves crystal
formation, the conformation of the protein may not actually
be reflective of the biological conformation. Therefore, the
extension of deep learning to elucidate protein folding dy-
namics and the ability to more accurately represent the set of
biological conformations adopted by a protein molecule is an
interesting future direction. Furthermore, even though CASP
represents a rigorous method to validate a protein structure
prediction approach, more large-scale tests are still needed.
In particular, although only a very small correlation was
observed between the final model quality by AlphaFold2 and
the MSA depth obtained from a third-party MSA collection
program (184), a more systematic study should identify if
there is indeed some effect of MSA depth on model perfor-
mance. This is especially important for targets with very few
sequence homologs. Given all these considerations, more
work must be done before a complete solution to the protein
structure prediction problem can be confidently asserted.
Nevertheless, the rapid progress witnessed within the past
few years alone provides hope that the complete protein
structure prediction problem may be solved using deep
learning within the foreseeable future, where predictions may
consistently achieve accuracies that rival and even exceed
experimental methods.
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