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Information derived from metagenome sequences through deep-
learning techniques has significantly improved the accuracy of tem-
plate free protein structure modeling. However, most of the deep
learning–based modeling studies are based on blind sequence
database searches and suffer from low efficiency in computational
resource utilization and model construction, especially when the
sequence library becomes prohibitively large. We proposed a Meta-
Source model built on 4.25 billion microbiome sequences from four
major biomes (Gut, Lake, Soil, and Fermentor) to decode the inher-
ent linkage of microbial niches with protein homologous families.
Large-scale protein family folding experiments on 8,700 unknown
Pfam families showed that a microbiome targeted approach with
multiple sequence alignment constructed from individual Meta-
Source biomes requires more than threefold less computer memory
and CPU (central processing unit) time but generates contact-map
and three-dimensional structure models with a significantly higher
accuracy, compared with that using combined metagenome data-
sets. These results demonstrate an avenue to bridge the gap
between the rapidly increasing metagenome databases and the
limited computing resources for efficient genome-wide database
mining, which provides a useful bluebook to guide future micro-
biome sequence database and modeling development for high-
accuracy protein structure and function prediction.

microbiome j protein structure prediction j deep learning j multiple
sequence alignments j protein homologous families

G iven the rapid explosion of protein sequences, computer-
based approaches play an increasingly important role in

protein structure determination and structure-based function
annotations (1, 2). Two types of strategies have been widely
considered for protein three-dimensional (3D) structure pre-
diction (2): the first is template-based modeling, which con-
structs structural models using solved structures as templates,
where its success requests for the availability of homologous
templates in the Protein Data Bank (PDB); the second is tem-
plate free modeling (FM) approach (or ab initio modeling),
which dedicates to model the “Hard” proteins that do not have
close homologous structures in the PDB. Due to the lack of
reliable physics-based force fields, the most efficient FM meth-
ods, including Rosetta (3), QUARK (4), and I-TASSER (Itera-
tive Threading ASSEmbly Refinement) (5), and most recently
AlphaFold (6) and trRosetta (7), rely on a prior spatial
restraints derived, usually through deep neural-network learn-
ing (8, 9), from the coevolution information based on multiple
sequence alignments (MSAs) of homologous sequences (10).
Hence, to model 3D structure of the “Hard” proteins, a suffi-
cient number of homologous sequences is critical to ensure the
accuracy of deep machine-learning models and the quality of
subsequent 3D structure constructions (11).

Considerable effort was recently paid to the utilization of
metagenome sequence data to enhance the MSA and FM

model constructions. For example, Ovchinnikov et al. used the
Integrated Microbial Genomes database to generate contact-
map predictions and create high-confidence models for
614 Pfam protein families that lack homologous structures in
the PDB (12). Using UniRef20 (13), Michel et al. combined
contact-map prediction with the CNS (Crystallography & NMR
System) folding method (14) to model protein structure for 558
Pfam families of unknown structure with an estimated 90% spe-
cificity. Most recently, Wang et al. examined the usefulness of
the Tara Oceans microbial genomes and found that the micro-
biome genomes can provide additional help on high-quality
MSA construction and protein structure and function modeling
(15). This result demonstrated a significant role of the micro-
biome sequences, which represent one of the largest reservoirs
of microbial species on this planet, in FM structural folding and
structure-based function annotations.

Despite the success of metagenome-assisted 3D structure
modeling, there are still thousands of Pfam families whose struc-
ture cannot be appropriately modeled with a satisfactory confi-
dence. One critical reason is that despite the rapid accumulation
of sequences, the current sequence databases are far from
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complete, and very few homologous sequences are available for
many of the FM targets. On the other hand, the metagenome
sequence databases have become extremely large (e.g., the Joint
Genome Institute database contains more than 60 billion micro-
bial genes and keeps increasing with at least 20,000 new sequen-
ces added per day) (16, 17), which makes a thorough and
balanced database search increasingly slow and difficult. In a
recent study, Zhang et al. showed that using current data mining
tools, the quality of MSAs from metagenome library is not
always proportional to the effective number of homologous
sequences (Neff, reference SI Appendix, Eq. S1), partly due to
the complexity of the sequence family relations and the bias of
sequence database searches (10). The recent CASP experiments
also witnessed various examples where the folding simulations
for FM targets are negatively impacted by the contact/distance
predictions due to the biased MSAs from the large metagenome
datasets despite the high Neff value (18, 19). Therefore, a bal-
anced sequence mining with accurate MSA construction is of
critical importance to help improve the efficiency of sequence
database searching and the subsequent 3D structure modeling.

In this work, we hypothesize that there exists an inherent evo-
lutionary linkage between microbial niches (biome) and protein
families, where a targeted approach built on linked biome fami-
lies can be used to improve both efficiency and accuracy of MSA
construction and protein structure predictions. To examine the
hypothesis, we collected a model library of 4.25 billion micro-
biome sequences from the EBI metagenomic database (MGnify
database) (20) that cover four major biomes (Gut, Lake, Soil,
and Fermentor). The “marginal effect” analyses showed pro-
foundly different effects of specific biomes on supplementing
homologous sequences for different Pfam families. A machine-
learning model named MetaSource is then developed to predict
the source biome of target proteins, which can significantly
improve the contact-map and 3D structure models accuracy
with using more than threefold lower computer memory and
CPU time. These results have validated the important biome-
sequence–Pfam associations, which can lead a way toward better
efficiency and effectiveness of the microbiome-based targeted
approach to protein structure and function predictions.

Results and Discussions
Biome-Specific Microbiome Samples Contain Billions of Different
Functional Genes from Thousands of Genera. The 1,705 microbiome
samples were collected from four typical microbial niches (biomes)
(Gut, Lake, Soil, and Fermentor, Fig. 1A). Processed by the EBI
pipeline version 4.1, a total of 4.25 billion protein sequences
(functional genes) were predicted from these biomes, where a
biome-specific taxonomic profile can be observed in Fig. 1B. The
taxonomical profile illustrates that each biome is enriched for a
specific set of abundant phyla, followed with a large number of
low-abundant phyla, which represents a common distribution in
microbial community (21–23).

Among the 1,705 microbiome samples, 169 phyla were identi-
fied, covering the common members in the kingdom of Bacteria
and Archaea. With further classification on the genus level,
8,721 genera were identified, and different top-five genera
ranked by relative abundance in four biomes also illustrate a
biome-specific taxonomic profile (Fig. 1C). These results indi-
cate that the biomes host different microbiome cohorts, and fur-
ther investigation revealed the correlation between microbial
communities’ taxonomic profile and their living biome: in the
Gut biome, for example, Firmicutes (average relative abun-
dance: 0.41 ± 0.28) and Bacteroidetes (average relative abun-
dance: 0.26 ± 0.14) were the dominant phyla. Members in
phylum Firmicutes were involved in energy resorption associ-
ated with reduced low-grade inflammation in obesity (24). Bac-
teroidetes play an important role in the development of immune

dysregulation and systemic disease (25, 26). In Lake and Soil
biome, phylum Proteobacteria is the dominant phylum (average
relative abundance: 0.23 ± 0.18 and 0.35 ± 0.16, respectively),
which takes part in nitrogen fixation and oxidation of iron, sul-
fur, and methane (27). In the Fermentor biome, phylum Firmi-
cutes is the dominating phylum (average relative abundance:
0.46 ± 0.36), in which most members play the role of anaerobic
fermentation (28), the main function of most Fermentor.

To illustrate the divergence among the biomes, statistical
tests were performed based on the species distribution: the Wil-
cox test (nonparametric statistical test, single-tail test) for each
pair of four biomes indicate a statistical difference among four
biomes (SI Appendix, Table S1). Furthermore, the Principal
Coordinates Analysis (PCoA) indicates a biome-specific taxo-
nomic profile for 1,705 microbiome samples (Fig. 1D): samples
collected from the same biome could cluster into one group
(reflected by a concentrated confidence circle). Moreover, sam-
ples from the Lake biome were closer to those of the Soil
biome, while those of the Gut biome and Fermentor biome
were closer. This phenomenon could be attributed to the simi-
lar environments between Gut and Fermentor (oxygen-limited
environment), as well as between Lake and Soil environment
(open-air environment).

Among the 4.25 billion protein sequences obtained from
these four biomes, we observed the biome-specific functional
profiles. In total, 1.25 billion proteins could be annotated by
Gene Ontology (GO) database. Similar to taxonomic profile,
these four biomes host different functional annotations (Fig.
1E): 0.36 billion (68.4%) annotations were only detected in Gut
biome, 0.038 (29.9%) billion annotations only in Lake biome,
0.32 (62.7%) billion annotations only in Soil biome, and 0.016
billion (24.2%) of gene annotations only in Fermentor biome.
The PCoA result based on functional profiles presents clear dif-
ferences among these four biomes (Fig. 1F). Again, samples
from Gut and Fermentor biomes were closer, while samples
from Lake and Soil were closer, similar with the PCoA result
based on taxonomic profiles. These results illustrated a statisti-
cally biome-specific taxonomical profile and functional compo-
sition and the feasibility of using the biome as a label to search
for the protein with the specific function.

Metagenome-Sourced Proteins Assisted Successful Structure Modeling
for Thousands of Protein Families without Homologous Templates.
Recent studies have shown that metagenome sequences can help
improve the performance of protein structure prediction (12, 15),
especially for the Pfam families without solved structures. We
selected 2,214 Pfam families with the Neff of MSA >16 (= 24)
from 8,700 Pfam families that have no member with solved
structures. These Pfam families were all categorized as Hard
targets by LOMETS (LOcal MEta-Threading Server) because
no homologous templates could be detected from the PDB by
threading (29). Here, the Neff = 16 was selected as cutoff, because
we found most of the monomer targets with Neff > 16 are fold-
able by contact-assisted I-TASSER (C-I-TASSER) from the 168
benchmark targets (SI Appendix, Fig. S1). Starting with micro-
biome sequences, we extended the deep-learning C-I-TASSER
(19) method to predict structure models for the 2,214 unsolved
Pfam families. Based on the benchmark results showing that mod-
els with a confidence score (C-score) ≥�2.5 usually have a correct
fold (see Eq. 2 and SI Appendix, Fig. S2), 47% (1,044/2,214) of
the Pfam families were found to be foldable by C-I-TASSER
(Fig. 2A). In Fig. 2B, we presented the C-score histogram distri-
bution of the C-I-TASSER models on the 2,214 unknown Pfam
families. Considering false discovery rate (FDR) obtained from
the benchmark tests (see Materials and Methods), there should
be around 971 [= 1,044 × (1 – 6.96%)] Pfam families with high-
confidence models.
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Here, the benefit for the inclusion of the microbiome sequen-
ces is obvious, as the average number of homologous sequences
(1,646) in the MSAs collected from the metagenome database is
3.6-fold higher than that in the original Pfam MSA (459) built
on the UniProt genome database, where 2,166 families have
the number increased and 48 have the number reduced (SI
Appendix, Fig. S3A). As a result, the average Neff of the meta-
genome MSAs (75.9) is 196% higher than that of the Pfam

MSAs (25.6) (SI Appendix, Fig. S3C). Especially, although the
average sequence similarity to the query of the metagenome
MSA (46.7%) is 11% higher than the original Pfam MSAs
(42.2) (SI Appendix, Fig. S3B), the average Meff value, which is
a measure of the diversity of MSAs by HHblits (30), is 97%
higher than that of the Pfam MSA (Meff = 3.9) (SI Appendix,
Fig. S3D). Such a comprehensive MSA from microbiome, which
covers more diverse and homologous sequences, will help the

Fig. 1. Taxonomic and functional profiling for different microbiome samples. (A) The basic statistics of microbiome samples collected from the four biomes.
(B) Species distribution on phylum level for samples in four biomes. The species distribution is categorized by their biomes and labeled with different colors. For
all the samples, the top 10 phyla ranked by the average counts among all samples are illustrated. “Unassigned” means the species cannot be identified by a
known phylum. “Other” represents the combination of the rest of the phyla. (C) Top-five genera ranked by relative abundances for four biomes. (D) PCoA
result based on taxonomic profile on genus level for samples from the four biomes. Samples from the same biome are labeled with the same color. The CIs of
samples in the same biome are marked in circles. (E) The shared and specific functional distribution for four biomes. The number labeled in the figure means
the number (in billion) of specific or sheared sequences annotated by GO database. (F) PCoA result based on functional distribution for samples from the four
biomes based on GO annotation. Samples from the same biome are labeled with the same color. The CIs of samples in the same biome are marked in circles.
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deep-learning algorithms to better derive coevolution informa-
tion involved in residue pairs and therefore result in more accu-
rate contact maps to assist the C-I-TASSER structure modeling.
A more detailed comparison of MSAs collected from original
Pfam families and using microbiome metagenome is supplied in
SI Appendix, Text S2.

The C-I-TASSER modeling was performed on the Pfam
database version 32.0 released in September 2018. The new
Pfam version 33.0 reported 28 new families with solved struc-
tures for at least one member among the 2,214 modeled Pfam
families, which provides an opportunity to assess the perfor-
mance of the prediction. Since only one member from each
Pfam family was modeled by C-I-TASSER, the modeled mem-
ber may be different from the member with solved structure.
For these cases, we superposed the solved structure to the C-I-
TASSER model using TM-align (Template-modeling-align)
(31) and calculated the TM-score (Template-modeling-score)
between the C-I-TASSER model and the experimental struc-
ture. The comparison between the C-I-TASSER models and
the solved experimental structures is listed in SI Appendix,
Table S2. Although all the families are nonhomologous to the

PDB structures, 50% of the C-I-TASSER models have been
correctly folded with TM-scores >0.5. This result is roughly
consistent with the estimation that 47% of the 2,214 Pfam fami-
lies are foldable by C-I-TASSER. Fig. 2C presents the 13 Pfam
families which have a C-score >�2.5. While most of the targets
have a correct fold, there are two cases (PF3864 and PF12357)
whose TM-scores are below 0.5. For PF3864, C-I-TASSER pre-
dicted it as a three-helix bundle but the solve structure covers
only two helices. Therefore, TM-score is 0.46 when normalized
with full-length query sequence. If we normalized the TM-score
by the length of the solved structure as what is done in CASP,
the TM-score will be increased to 0.55. For PF12357, the solved
structure shows that the major components of the structure are
coils. Although the deep-learning predicted contact maps have
a random-like pattern, the simulation of C-I-TASSER showed
some convergency, resulting in a C-score = �2.33 marginally
above the cutoff, which gives the false-positive model with a
TM-score = 0.4.

As a deep-learning guided structure folding method, the per-
formance of C-I-TASSER generally improves with the increase of
homologous sequences. However, we observed a number of cases

Fig. 2. Structural modeling results for unknown Pfam Hard families. (A) Number of Pfam families at each stage of the analysis, where each set is a subset of
the previous set. (B) The C-score distribution of the Pfam Hard families with Neff >16. (C) Structural models on 13 newly solved Pfam families with C-score
>�2.5. In each case, the C-I-TASSER model is shown in rainbow color, and the solved experimental structure of a member from the same Pfam family is
shown in gray.
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which C-I-TASSER fail to fold even with a relatively high Neff (SI
Appendix, Fig. S1). SI Appendix, Fig. S4A presents the structures
of the 12 targets whoseNeff >16 but with TM-score <0.5. Most of
these targets are from one part of protein complexes and contain
flexible regions, that is, a helix or strand that is largely far away
from the core region. The coevaluation across interacting protein
chains could results in false contact predictions. As shown in
SI Appendix, Table S3, half of the targets have incorrect contact
maps with the top-L/5 long-range contact accuracy below 0.2.
Meanwhile, the hydrophobic energy terms in the C-I-TASSER
force field tend to fold the targets into a compact structure when
isolated monomer proteins are modeled. SI Appendix, Fig. S4B
presents a typical example ivli_A2, which comes from a triple-
chain complex. Although C-I-TASSER generated reasonable
short- and medium-range contact maps, the long-range contacts
are completely wrong (SI Appendix, Fig. S4C). These false-
positive long-range contacts, together with the generic hydropho-
bic force field of C-I-TASSER folded the protein into a compact
structure while the native structure is far more extended due to
the interaction with other component chains. An extended ver-
sion of C-I-TASSER incorporating protein complex interactions
in both contact prediction and folding simulations will be essen-
tial to address this issue.

The C-I-TASSER models, MSAs for all 2,214 Pfam families
with unsolved structures, and the benchmark dataset for C-I-
TASSER modeling are downloadable at https://github.com/
HUST-NingKang-Lab/MetaSource/releases.

Enrichment of Homologous Sequences from Different Biomes. For
the 1,044 Pfam families foldable by C-I-TASSER, an enrichment
of homologous sequences from a specific biome can be
observed, that is, 964 Pfam families (964/1,044, 92.3%) could be
identified with a single biome whose Neff value is larger than the
other three biomes, including 105 families for Gut, 116 families
for Lake, 617 families for Soil, and 126 for Fermentor (Fig. 3A).
For the remaining 80 Pfam families, two or more biomes con-
tributed equally, which may be caused by the limited number of
metagenome sequences (average 8.3 ± 3.1 metagenome sequen-
ces) aligned. We observed that sequences from the Soil biome
could assist in folding more Pfam families than other biomes,
that is, 39.6% sequences in the Soil biome could be aligned to
Pfam families, while only 33.1% for the Gut biome, 30.8% for
the Lake biome, and 24.3% for the Fermentor biome. These
results are understandable as the metagenome in the Soil biome
has been shown to have the highest species richness and most
functional genes among these four biomes (32). However, it is
worth mentioning that though microbiome sequences from Soil
biome could supplement more Pfam than sequences from other
biomes, this is not a winner-take-all situation: other biomes still
work better than Soil biome for specific Pfam families.

To assess the utilization efficiency (UE) of metagenome
sequences in Pfam structure modeling, we define UE¼∑iðni=NÞ,
where ni is the number of sequences from the metagenome data-
sets that are homologous to the ith Pfam family, and N is the total
number of metagenome sequences considered. In Table 1 (column
7), we list the UE values for different metagenome datasets on the
Pfam families that are foldable by C-I-TASSER. It is shown that
the utilization efficiencies of the three single biomes (Lake, Soil,
and Fermentor with UE = 0.19, 0.49, and 0.94, respectively) are
considerably higher than that from the combined dataset (0.15),
although Gut’s UE are relatively low (0.04). If we count the num-
ber of Pfam families assisted by specific biomes, Soil and Fermen-
tor assisted 907 and 2,000 families foldable per TeraByte (TB)
sequences, respectively, which are 2 to 5 times higher than that
of the combined dataset, where the latter is comparable to those
in previous metagenome structure modeling works (12, 15). These
results suggest that targeted MSA collections from specific
microbial biomes could improve the utilization efficiency of

metagenome sequences compared with the approach that simply
combines all available sequence datasets.

To decipher the important role of the solved Pfam families in
their living environment, taxonomic profile and functional com-
position analyses were applied for each of the 964 Pfam families
with single corresponding biome (Fig. 3). The taxonomic profile
for the 964 Pfam families illustrates specificity of contributions of
microbial biome’s sequences to Pfam structure modeling (Fig.
3B). Overall, similar to microbiome samples (Fig. 1B), the hetero-
geneous species distribution reflects a biome-specific enrichment
pattern for the 964 Pfam families. Moreover, the dominating spe-
cies in specific Pfam families are often the dominating species in
assisted microbiome samples for MSA constructions. For exam-
ple, In Pfam families labeled with Gut biome (Figs. 1B and 3B),
phylum Firmicutes and Bacteroidetes (both belonging to Gut)
were the dominate phyla in Pfam families (0.41 ± 0.28 and 0.26 ±
0.14, respectively) and corresponding source biome (0.48 ± 0.31
and 0.31 ± 0.15, respectively), which indicates that this biome-
specific enrichment pattern was influenced by the species compo-
sition of the microbiome samples.

In addition to structure modeling, the functional composi-
tion for the 964 Pfam families provides a useful insight into this
biome-specific enrichment pattern. Based on the GO annota-
tion, for example, 368 Pfam families were aligned to GO level-3
Biological Process (286), Molecular Function (90), and Cellular
Component (189) (Fig. 3 D–F). By analyzing the functional
annotations for these Pfam families, the biome-specific enrich-
ment pattern could also be detected, reflected by the fact that
many function annotations were only detected in a single
biome, including 129 (45.1%) for Biological Process, 69
(76.7%) for Molecular Function, and 109 (57.7%) for Cellular
Component (SI Appendix, Table S4).

Further functional analysis based on the biological process
annotations reveals their important roles in helping the host
species to adapt to their environment (Fig. 3D). In Gut and
Fermentor biomes, for example, the main functions are associ-
ated with anaerobic energy metabolism (52.7% and 68.7%
annotations for Gut and Fermentor, respectively). Enrichment
of these functions could help their host to efficiently utilize the
carbon sources to live in the oxygen-free environment and pro-
duce metabolites to interact with their host (33, 34). In the
Lake biome, the main functions are associated with bacteria-
specific cell motility (60.3%) to help their host adapt to the
flowing water environment (35). Moreover, in the Soil biome,
the functional roles of Pfam families with a C-score ≥�2.5 were
connected to such processes as nitrogen fixation (28.8%) and
oxidation of iron (20.3%), sulfur (16.8%), and methane
(10.3%) to take part in the soil chemical element cycle or adapt
to the iron-enriched environment (36–38).

The aforementioned association of protein families with biomes
are rooted in the intricate but potentially important properties
of the protein structures and functions: to adapt their biomes,
functional genes from microbial species have to evolve so that
the species could gain the advantage over other species in that
specific niche, thus certain functional genes (or protein fami-
lies) would be highly likely to be enriched in a specific niche,
though not exclusive to be present in such a niche. A typical
example for supplementing homologous sequence for Pfam
family 3D structure and function prediction is on a previously
unsolved Pfam family PF09828, which contained 713 homolo-
gous sequences in the family and 98.3% sequences (701/713) of
them are identified as bacteria (Fig. 3C). After the sequences
from the four biomes were included in the MSA construction
search, the number of homologous sequences in the MSA for
this family increased from 713 to 5,582 (Soil: 5,348, Lake: 151,
Gut: 4, Fermentor: 79), resulting in a relatively high-accuracy
contact-map and 3D structure prediction (C-score = �1.43).
Interestingly, 526 sequences of the bacteria-sourced sequences
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in Pfam sequences (73.8% = 526/713) are classified into phy-
lum Proteobacteria, the dominant phyla in the Soil biome that
counts for 93.0% of the homologous sequences supplemented
in the MSA (Fig. 3B). Further functional analysis reveals its
role in the Soil biome: bacteria that hosts in plant produce the
proteins identified as PF09828 to reduce the accumulation of
chromate in plant (39). The reduction of chromate in plant
could promote the growth of the plant and prevent the trans-
mission of cadmium to humans through the food chain, which
leads to cadmium poisoning (40). In SI Appendix, Text S3
and Table S5, we list 10 other examples to showcase the
biome-sequence–Pfam relationships. Taken together, these

data illustrate potential correlations between the composition
of the Pfam families and the source biomes used to supplement
the MSAs for structure and functional modeling.

Marginal Effect Analyses Reveal Biome-Sequence–Pfam Relation-
ship. The results of the last section have strongly indicated that
the protein sequences from different biomes have profoundly
different effects on supplementing homologous sequences of
different Pfam families. To quantitatively examine the effect, we
define the marginal effect of ith biome on jth Pfam family by
MEij ¼ nij=mj, where nij is the number of homologous sequences
for the jth family when searching the query through ith biome

Fig. 3. The taxonomic and functional prop-
erties of the Pfam families foldable by C-I-
TASSER. (A) C-score distribution for Pfam
families after replenishing by metagenome
sequences. The vertical axis represents the
C-score. For each panel, horizontal axis
represents the Pfam families (31). (B) The
relative abundance of species distribution
for Pfam families which were foldable by
C-I-TASSER. The species distribution is
divided into four biomes and labeled with
different colors. Calculated by the average
count among all samples, the top 10 phyla
are illustrated and ranked. “Other” repre-
sents the combination of the rest of the
phyla. (C) Proteins in PF09828 are involved
in the reduction of chromate accumulation
and are essential for chromate resistance.
Bacteria that hosts in plant produce the
proteins identified as PF09828 to reduce
the accumulation of chromate, resulting in
the fast growth of the plant and prevent-
ing the transmission of cadmium to
humans through the food chain leads to
cadmium poisoning. For all the Pfam fami-
lies which were foldable by C-I-TASSER,
after aligning the Pfam species to the
Interpro database, their protein functions
were annotated by GO annotations and
classified by three top annotations: Biolog-
ical Process (D), Molecular Function (E),
and Cellular Component (F).

Table 1. Summary of utilization efficiency of metagenome sequences

Dataset V* Np† Nf‡ Nf/V§ Nf/Np¶ UE#
P value (Integrated Microbial
Genome/Tera/combined)jj

Integrated Microbial Genome 1.41 2.25 614 435.5 272.9 0.10 NA/NA/NA
Tera Oceans 0.15 0.20 68 453.3 348.7 0.30 NA/NA/NA
Combined 2.4 4.3 1,044 435.0 245.7 0.15 4E-19/E-26/NA
Gut 1.4 2.1 105 75.1 50 0.04 5E-20/9E-18/6E-23
Lake 0.3 0.7 116 386.7 178.5 0.19 4E-22/3E-17/8E-22
Soil 0.68 1.4 617 907.4 440.7 0.49 9E-20/3E-19/5E-20
Fermentor 0.06 0.1 126 2,000.0 1,326.3 0.94 9E-21/5E-19/8E-20

For predicted Pfam families with unsolved structures, the statistic results for metagenome sequence utilization efficiency were calculated for results
based on combined dataset (metagenomes from all of the four biomes), four single biomes, compared with datasets from previous studies.
*V: Volume size of protein sequence datasets (in TB).
†Np: No. of protein sequences (in billions).
‡Nf: No. of foldable Pfam families with C-score >�2.5.
§Nf/V: No. of foldable Pfam families/Volume size of dataset.
¶Nf/M: No. of foldable Pfam families/Number of sequences (per billion sequence).
#UE: Utilization efficiency of metagenome sequences in Pfam structure modeling (per 1,000 metagenome sequences).
jjP value: P value calculated on the UE values relative to “Integrated Microbial Genome,” “Tera Oceans,” and “Combined data,” respectively.
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dataset, and mj is the number of homologous sequences in the
jth family from the Pfam database. In Dataset S1, we list the
marginal effects of the four biomes on all the 8,700 unknown
Pfam families; the data shows that the contributions of different
biomes to a specific Pfam can be drastically different, as
reflected by their ME values. In Fig. 4 A–D, we present the con-
tribution of biomes on the MSA collections for four examples
from PF04213, PF10785, PF13864, and PF12357, where the
microbiome samples were randomized for the MSA collections
at different sequence numbers. For different Pfam families, the
sequence homology pools are dominated by different biome
datasets, suggesting again a strong link between biome and
Pfam in regard to homologous sequence supplement.

To examine the overall trend of marginal effect, we plot in
Fig. 4E the ðnij þmjÞ versus mj values for all 8,700 Pfam fami-
lies from four microbial biomes. For each biome, a linear
regression was established based on the marginal value distri-
bution of the 8,700 Pfam families. The correlation coefficients
of simulated curve for four biomes are 0.678, 0.542, 0.321, and
0.215 for Soil, Lake, Gut, and Fermentor, respectively, suggest-
ing that the metagenome sequences are estimated to process a
statistically positive effect to supplement the homologous
sequences for Pfam families. On average, the marginal effect
value is 5.28 ± 3.25, 3.85 ± 2.96, 3.48 ± 3.11, and 4.12 ± 1.65
for Soil, Lake, Gut, and Fermentor, respectively. This rank of
average marginal values for four biomes is largely consistent
with the rank of species richness for the four biomes (SI
Appendix, Fig. S5). Although the Soil biome has the highest
overall marginal effect value, there are several hundreds of the
Pfams families which have their highest marginal value from
other three biomes, suggesting again the importance of biome-
specific metagenome sequence selection to maximize the effi-
ciency of MSA collection.

In Fig. 4F, we split Pfam families into two groups based on C-
I-TASSER folding results. It was shown that the ME value for
the families with C-score ≥�2.5 is much higher than that with
C-score <�2.5 (5.27 ± 3.44 versus 1.28 ± 0.85 with a P value =
3.86e-26 in Student’s t test). Therefore, marginal effect value is
also strongly correlated with the ability of a biome-specific meta-
genome sequence to assist the 3D structure assembly simulation
through supplementing more homologous sequences.

MetaSource Prediction Model for Effective Homologous Sequence
Supplements. Previous analysis has revealed a profoundly different
effect of specific biomes on supplementing homologous sequences
for different Pfam families. Here, we proposed the MetaSource
prediction model to identify one or a set of biomes, which can bet-
ter supplement homologous sequence collections for specific
Pfam families. First, to determine whether the source biome of
the query Pfam family is one of the four biomes, a binary-
classification model was constructed by using the 964 Pfam fami-
lies labeled with a single biome as the training dataset and 7,736
(= 8,700� 964) Pfam families with unsolved structures as the test-
ing dataset. As shown in Fig. 5A, MetaSource achieves an area
under curve (AUC) of 0.96 under 0.001 permutation P value on
the binary-classification test. Second, to predict the most probable
source biome out of the four biomes for a Pfam family, the multi-
class random forest algorithm was chosen to construct this model.
In this context, a biome that could supplement the largest number
of homologous sequences was considered as the “correct” biome.
The 964 Pfam families labeled with a single biome were used, with
20 cross-validation iterations (Fig. 5B), showing a strong predic-
tive power of MetaSource for the Pfam families, with a microaver-
age AUC of 0.94, under 0.001 permutation P value. The top 20
important features used in MetaSource were supplied in SI
Appendix, Fig. S6.

Fig. 4. Evaluation of marginal effect for
Pfam families. Collected from the four
biomes, the homology sequences distribution
of Pfam family (A) PF04213, (B) PF10785, (C)
PF13864, and (D) PF12357 are illustrated,
where the source biome of these Pfams was
estimated by MetaSource. (E) The sequence
distribution of metagenome data from the
four biomes for all 8,700 Pfam families with
unsolved structures. After the sequences from
four biomes were aligned to 8,700 Pfam fami-
lies with unsolved structures, respectively, the
marginal effect is estimated by comparison of
the number of Pfam family’s homologous
sequences before and after the use of the
metagenome sequences. (F) Marginal effect
categorized by protein structure estimate
scores.
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To further examine the practical usefulness of the Metagenome
database and MetaSource model in 3D structure modeling, we
incorporated the 204 Pfam families with known structure into our
analysis as the validation dataset (Fig. 5C). First of all, C-I-
TASSER using the MSA from genome database (Uniclust30 +
Uniref90, step 2 results of DeepMSA, SI Appendix, Fig. S7) can
generate a model with TM-score = 0.583, which is 2.5% higher
than a C-I-TASSERmodel that solely uses the Uniclust30 genome
database (step 1 of DeepMSA) with P value = 2.1E-4 by one-
tailed paired Student’s t test (SI Appendix, Fig. S8). Uniclust30
and Uniref90 database are built from the same UniprotKB
database, which means no potentially new sequences should exist
in Uniref90 over Uniclust30. Thus, this increase of modeling per-
formance is due to the iteratively homolog refinement searching
by DeepMSA. After adding metagenome database in the step 3 of
DeepMSA, the TM-score of C-I-TASSER models increases to
0.609, which is 4.5% higher than only using genome databases
with P value = 3.8E-11. This result demonstrates again the useful-
ness of the metagenome database in 3D structure prediction by
extending the MSA coverage and diversity. Overall, by combining
the DeepMSA tool with metagenome database, TM-score of the
C-I-TASER model increased by 7% compared with the simple
one-step HHblit MSA collection approach.

Furthermore, given the rapid increase of metagenome data-
bases, selecting a subset of related homologous sequences would
be helpful for improving both the speed and accuracy of MSA
collection and protein 3D structure modeling. As listed in SI
Appendix, Table S6, MetaSource was able to predict the biomes
which resulted in the highest Neff (or the highest TM-score) with
an accuracy of 79.9% (or 80.2%) (permutation P value: 0.001) on
the 204 solved Pfam families. In Fig. 5D, we further compare the
average contact accuracy and TM-score of the C-I-TASSER mod-
els when using MSAs collected from the combined dataset and
the dataset chosen by MetaSource. It was shown that, although
the volume of the sequence database is much smaller (0.74 TB/
per target and 2.40 TB/per target for MetaSource and Combined
datasets, respectively), using the targeted dataset from Meta-
Source results in a higher contact accuracy (0.512) and TM-score
(0.625) than that of the combined dataset (0.496 and 0.609),
which corresponds to a P value = 2.0E-5 for contact and a P
value = 6.3E-6 for TM-score in Student’s t test. As shown in SI
Appendix, Fig. S9A, 70% of the targets have the TM-score
increased by biomes chosen by MetaSource. Accordingly, the
speed of MSA search based on MetaSource (1.65 h/per target) is
also faster than that from the combined dataset (5.44 h/per tar-
get). The result may be understandable because sequences from

Fig. 5. The source biomes predicted by
MetaSource for Pfam families. (A) The
receiver operating characteristic (ROC)
analysis of binary-classification Meta-
Source model. This model was constructed
to determine whether the source biome
of the query Pfam family is one of the
four biomes. (B) The ROC analysis of
multiple-classification MetaSource model.
This model was constructed to predict the
source biome for Pfam families. To evalu-
ate the overall prediction accuracy, the
microaverage (obtained by aggregating
the contributions of all classes to compute
the average metric) and macroaverage
value (calculated by the metric indepen-
dently for each class and taking the aver-
age) were applied. (C) The Pfam classifica-
tion result for all the Pfam families based
on the prediction result of MetaSource
model. (D) Average TM-score, accuracy of
top-L contacts, and average MSA search
time for the combined and MetaSource
predicted biome datasets. (E) Case studies
of modeling Pfam (PF08941 and PF00737)
with MSA from different biomes. The
model with the highest TM-score is shown
in blue font. The model labeled with red
frame is the source biome predicted by
MetaSource.
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the “wrong” source biome can produce “noise” to the MSA col-
lection and deep learning–based contact prediction, where the
identification of correct source biomes could help depress such
noises. Here, it is noted that although the overall TM-score
increase (2.6% = (0.625-0.609)/0.609) is slightly lower than that
due to the introduction of metagenome (4.5% = (0.609-0.583)/
0.583), the MetaSource approach has additional impact on improv-
ing the speed of MSA construction, which is important in the
long run to the field with the rapid increase of the metagenome
databases.

In Fig. 5E, we present two Pfam examples from PF08941
and PF00737 with known structure, for which MetaSource pre-
dicted Soil and Lake as the best source biome, respectively.
In both cases, only the models with the MetaSource predicted
biomes could create a model with a TM-score above 0.5. We
also noticed that, although the MSA from the combined biome
contains more sequences than single biome, the structure models
are clearly worse than the MSA from some single biome (Soil or
Lake), probably due to the noise contribution from irrelevant
metagenome sequences. Taxonomic profile analyses also showed
that PF08941 and PF00737 are mainly composed with proteins
from phylum Proteobacteria and Cyanobacteria, which dominate
in Soil and Lake biomes, respectively (27, 41).

Nevertheless, there are overall 29 out of the 204 test cases
(14%) where C-I-TASSER failed to generate correct fold with
a TM-score >0.5. As listed in SI Appendix, Table S7, most of
the failed cases are due to the following: 1) the target is part of
a protein complex as discussed in SI Appendix, Fig. S4; or 2)
the number of effective sequences, Neff, is too low for both
combined and MetaSource MSAs. There are also a few cases
which failed due to bad tail orientation and sparse MSA at
local structural regions. Despite the failures, the TM-score of
the models using MetaSource is higher than that using com-
bined sequences for most of the cases, suggesting that the fail-
ure was not due to the use of MetaSource. Overall, although
the Neff of MetaSource (= 41.7) is lower than the combined
MSA (51.2), the average TM-score of MetaSource (= 0.348) is
higher than the latter (0.329), demonstrating the efficiency of
MetaSource to selecting correct biomes even for the difficult
cases. By checking the entire testing set, we identified one case
(PF07072) for which the C-I-TASSER model using MetaSource
MSA is obviously worse than that using combined MSA (TM-
score = 0.527 versus 0.574); this failure was due to the incorrect
biome prediction by MetaSource that predicted the biome
“soil” as the targeted biome while the biome with the highest
Neff and TM-score is “fermentor” (SI Appendix, Table S6).
Since PF07072 consists of a high portion of the sequences that
cannot be classified to any known phylum (29.8% = 290/972),
improving the accuracy of MetaSource for such families will be
important to address this issue.

In addition to C-I-TASSER, we also examined the usefulness
of the MetaSource for other recently developed deep
learning–based protein modeling methods, including DMPfold
(42), trRosetta (7), and AlphaFold2 (43). As summarized in SI
Appendix, Fig. S9 B–D, the direct use of MetaSource selected
biomes has resulted in an TM-score increase for 65, 73, and
86% of models by DMPfold, trRosetta, and AlphaFold2,
respectively, where the P values for the average TM-score
changes are 8.1E-4, 7.3E-7, and 5.7E-7, respectively, showing
that the overall improvement is statistically significant. These
results demonstrated the generality of the concept for utilizing
the intrinsic links of protein and biome sequences to enhance
the sequence-based ab initio prediction structure prediction.

Conclusions
As a grand reservoir of novel genes and proteins, microbial com-
munities contain a large number of uncultured species that are

unique for adapting their living environments. Nowadays, the
metagenome sequencing technology has been advanced enough
to sequence microbial communities in many of the known biomes
on Earth, while more complete gene catalogs of microbial com-
munities have been obtained from some biomes than others due
to the accessibility of the species as well as their functional genes.
While these microbiome sequences have been shown useful for
boosting the accuracy and capacity of deep learning–based pro-
tein structure and function predictions, the model training and
metagenome search were largely blind and fall short in efficiency
in source tracking the most relevant biome datasets for specific
protein targets. For designing a more effective targeted approach,
deeper insights should be obtained to link microbiome biomes
with protein family homologous sequences.

In this study, we utilized a model library of 2.4 TB micro-
biome sequencing data, representing 4.25 billion microbiome
sequences from four major biomes (Gut, Lake, Soil, and Fer-
mentor) to investigate the usefulness of metagenome sequences
from specific biomes for protein structure prediction of individ-
ual Pfam families. First, the inclusion of these microbiome
sequences has boosted MSAs with credible multiplicity for
2,214 out of 8,700 Pfam families with unsolved structures. By
applying C-I-TASSER ab initio structure folding pipeline,
highly reliable folds were constructed for 1,044 Hard Pfam fam-
ilies, which account for 12% of all unknown Pfam families.

To further examine the association between the metagenome
sequences and Pfam families, we quantified the marginal effect of
metagenome sequences on Pfam families, where the data shows
that metagenome sequences from different biomes have drasti-
cally discriminable power to different Pfam families. Accordingly,
instead of searching through all the metagenome sequences to
find the homology sequences, a simple machine-learning model,
MetaSource, was constructed for source tracking the most rele-
vant biome datasets for specific Pfam family structure modeling.
The utilization of the MetaSource predicted biomes have resulted
in 3.2-fold reduction in the database size and 3.3-fold increase in
MSA construction speed but with 3.2% of contact-map accuracy
and 2.6% of TM-score increase in the C-I-TASSER final models.
This result is particularly encouraging in this postgenomic era
when the number of genome and metagenome sequences
increases exponentially, and the speed and memory requests
become a major bottleneck for sequence mining and MSA collec-
tion through large-scale sequence database searching (10). These
findings could be used as a useful bluebook to guide the modeling
of protein structure and function based on the deeper insights
into the biome–protein association.

In addition to “biome,” other biological labels may also be
used by the targeted modeling approach. As an example, we
have examined the use of phylum label to train a “PhylaSource”
model to guide the homology sequence search for the targeted
MSA construction. Since not all metagenome sequencing data
are currently labeled with phylum, we downloaded all the pro-
karyotic and viral genomes from the National Center for Bio-
technology Information (NCBI) that contain phylum label and
then trained PhylaSource on 964 Pfam families with known
structures (see details in SI Appendix, Text S4). As shown in SI
Appendix, Fig. S10 A and B, the use of the PhylaSource model
did result in a slightly (but statistically significantly) higher con-
tact accuracy compared with the use of the combined datasets
(0.488 versus 0.476 in top-L long-range contact with P value =
1.5E-5) and C-I-TASSER TM-score (0.617 versus 0.615 with P
value = 2.3E-5), despite the threefold reduction in the size of
searched sequence data (236 GB versus 736 GB by Phyla-
Source and combined, respectively). However, the overall accu-
racy is not as good as that by MetaSource (Fig. 5D), probably
due to the fact that the sequence dataset with phylum label
available (7.18E5) is significantly lower than the microbiome
data used by MetaSource (4.25E9). Nevertheless, this result
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demonstrated again the generality of the targeted approach
built on the inherent linkage of protein families and ecological
and evolutional species groups.

Furthermore, we examined the usefulness of modeling se-
quence distance (e.g., E-value) to guide the homology sequence
search. For this, we trained a model named “EvalueSource” to
predict what E-value cutoffs should be used for HHblits or
hmmer at the step 3 of the DeepMSA search when using a Pfam
family as input (see details in SI Appendix, Text S5). As shown in
SI Appendix, Fig. S10D, using the predicted E-value cutoff could
also result in a slightly higher contact accuracy (0.508 versus
0.496) and TM-score (0.613 versus 0.609), compared with that
using the default E-value in DeepMSA, but the difference is not
statistically (or marginally) significant with a P value = 0.062 and
0.055 for contact and TM-score, respectively. Meanwhile, the
average TM-score is significantly lower than that of MetaSource
(0.613 versus 0.625) with a P value = 3.5E-5. Since EvalueSource
used the same combined sequence database, it does not result in
any search space and time reductions as MetaSource or Phyla-
Source does. In this context, predicting generic sequence distan-
ces such E-value does not seem to be able to generate similar
effects as targeted models built on the ecological group labels
for improving both accuracy and speed of protein structure pre-
diction procedures. This is probably due to the fluctuation of
sequence distances among different protein families, while the
inherent linkage between protein families and the ecological
species groups could not be captured by the generic sequence
distances such as E-value cutoffs.

Finally, we should emphasize that this study only considers
four microbiome biomes (Gut, Lake, Soil, and Fermentor) with
C-I-TASSER structure modeling method as a proof of concept.
Much more metagenome datasets, including other ecological
indexes, could be straightforwardly incorporated into this model.
Moreover, with the rapid progress of the field, C-I-TASSER con-
sidering only contact-map restraints may no longer represents the
state of the art of protein structure prediction. We have made
brief tests on some of more advanced methods, including
DMPfold (42), trRosetta (7), and AlphaFold2 (43), which demon-
strated similar enrichments on the performance of structure
modeling. Thus, with the rapid accumulation of metagenome
sequence databases and the method developments involving more
thorough sequence-based restraints armed with more advanced
deep-learning methods, we expect that the targeted metagenome
selection approach should have more sensitive and pronounced
impacts on the efficiency and effectiveness of the protein structure
prediction and structure-based protein function annotations.

Materials and Methods
Microbial Community Cohorts Collected from Four Biomes. We collectedmeta-
genome data from the EBI database (https://www.ebi.ac.uk/metagenomics/).
We then referred to the EBI database; the microbial niches were annotated in
a hierarchical classification tree, named as biome (44). Hence, to cover all the
typical biomes, samples under three top-layer biomes were screened:
“Engineered” biome (the affiliate biome “Fermentor” was selected as a rep-
resentative biome), “Environmental” biome (the affiliate biome “Soil” and
“Lake”were selected as representative biomes), and “Host-associated” biome
(“Gut” biome as representative biome). The samples from Gut biome were
collected from human gut covering different countries (SI Appendix, Fig. S11)
and animal (mice, pigs, cattle, etc.) intestines.

Since the EBI data has been processed by a different processing pipeline,
we reanalyzed the 1,705 metagenomes uniformly using pipeline version 4.1. If
the data are processed by the pipeline older than version 4.1, the raw reads
were downloaded and performed by the SeqPrep (version 1.2) and Trimmo-
matic (version 0.35) for quality control. The proteins were then predicted by
FragGeneScan (version 1.20) and Prodigal (version 2.6.3). Finally, a total of
4.25 billion protein sequences were collected from the 1,705 high-quality sam-
ples. Moreover, the taxonomic profiles were predicted by MAPseq (version
1.2.2), and the functional composition was calculated by InterProScan based
on GO annotation (version 5.25-64.0).

Taxonomic and Functional Analysis for Pfam Families. To decipher the associa-
tion between microbial communities and Pfam families, the taxonomic and
functional distributions for the Pfam families were analyzed. Since the original
species for every homology sequence of a Pfam family could be tracked, all
the species information (species classification and count number for each spe-
cies) was obtained from the Pfam database and used as the taxonomic profile.
Moreover, the InterPro annotation and their associated GO terms for each
familywere used as the functional annotation, whichwas stored in Pfam data-
base. All these data are available at the file transfer protocol (FTP) site, under
the release version 32.0 (ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases/
Pfam32.0/).

Pfam Family Dataset Construction for 3D Structure Modeling. Pfam (version
32) is a database that contains 17,929 protein families, each represented by a
hidden Markov model (HMM). Typically, each Pfam entry is comprised of a
seed alignment, which forms the basis to build a profile HMM using HMMER
(45). The profile HMM is then queried against a sequence database, and all
matches scoring above the curated threshold are aligned back to the profile
HMM to generate the full alignment. Pfam includes 9,229 protein families
that have at least one member with experimentally determined structures.
For the remaining 8,700 families, there is no structural information available
for any member, where a breakdown of the Pfam families in this study is
shown in SI Appendix, Fig. S12.

From the 9,229 known Pfam families, 372 have been randomly selected as
a benchmark dataset to investigate the performance of C-I-TASSER andMeta-
Source. The families are Hard targets as defined by LOMETS (29) since there is
no homologous template with a sequence identity <30% in the PDB library.
To generate a representative sequence, we searched each of the Pfam families
against the SCOPe database, where the best hit with the PDB ID appearing in
the Pfam structure member list will be selected. Finally, 168 Pfam families are
used for benchmarking C-I-TASSER and the remaining 204 families for testing
MetaSource.

Out of the 8,700 unknown families, we first removed the entries with less
than 50 amino acids of sequence length, resulting in a set of 8,266 Pfam fami-
lies. We select one representative sequence for C-I-TASSER modeling for each
given Pfam family. To do so, we first ran “HMMsearch” to search the family
against the UniRef100 database, with the sequences hit ranked by their
E-values. For the best hit with the lowest E-value, we run DeepMSA (10)
to build MSA, where 2,251 Pfam families with Neff score >16 (see Neff defini-
tion in SI Appendix, Eq. S1) and defined as “Hard” targets by LOMETS
are selected for modeling. Finally, the 1,044 Pfam families with model having
C-score ≥�2.5 from C-I-TASSER are selected for training MetaSource model
(SI Appendix, Fig. S12).

Procedures of the MSA Collection. To predict the structure and function of
the 8,700 unknown Pfam families, the metagenome database of a combina-
tion of the four biomes (Gut, Lake, Soil, and Fermentor) were attempted to
supplement the Pfam homologous sequence using a three-step procedure
outline by DeepMSA (10) (SI Appendix, Fig. S7). In step 1, HHblits (30) from
HH-suite is used to search the query sequence against UniClust30 (46) to gen-
erate the first-level MSA. In step 2, the Jackhmmer from the HMMER (45)
package is used to search the query sequence against UniRef90 (47) to extract
full-length sequences (hits), and HHblits is used to convert the full-length
sequences into a custom HHblits format database. Starting from the first-level
MSA, HHblits is again applied to search this custom database to generate the
second level MSA. In step 3, the second level MSA is converted by hmmbuild
from the HMMER package into an HMM, and the HMM is then searched
against the metagenome sequence database (the combination of the four
biomes) by HMMsearch from the HMMER package to extract full-length hits.
Similar to step 2, hits from HMMsearch are built into a custom HHblits data-
base. The second level MSA is used to jump-start an HHblits search against this
custom HHblits database to get the third level MSA. For each MSA, a Neff
score is computed by SI Appendix, Eq. S1, where the families with Neff score
≥16 are selected as “effective Pfam families.” Finally, the homologous sequen-
ces in theMSA are collected for further protein structuremodeling.

The same MSA construction pipeline is also used for MSA generation for
168 C-I-TASSER benchmark dataset and 204 MetaSource testing dataset. Addi-
tionally, for MetaSource testing dataset, we also generated four sets of MSAs
which used four biomes as database individually instead of the combined
metagenome in DeepMSA step 3. Those five sets MSAs (from four biomes indi-
vidually and the combined one) of MetaSource testing dataset are used for
building five sets of C-I-TASSERmodels to check the correctness of MetaSource.

Contact-Assisted Structure Prediction by C-I-TASSER. Based on the collected
MSAs, residue–residue contact maps are predicted using five deep-learning
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and coevolution based predictors, including TripletRes (9), ResTriplet (48),
NeBcon (49), ResPRE (50), and ResPLM (19). The consensus contacts are col-
lected from top-L contacts from the five predictors, respectively. These con-
tacts are implemented in the C-I-TASSER simulation through the following
potential:

EcontactðdijÞ ¼

�Uij, dij ≤ 8

�Uij

2
� 1� sin

dij � ð8þ DÞ=2
D� 8

� π
� �� �

, 8 < dij < D

Uij

2
� 1þ sin

dij � ð80þ DÞ=2
80� D

� π
� �� �

,D < dij < 80

Uij, dij ≥ 80

8>>>>>><
>>>>>>:

[1]

where dij is the Cβ distance between residue pair i and j; Uij is the contact pre-
diction C-score for this residue pair; D is a protein length-dependent parame-
ter to change the gradient of the well, which ranges from 14 to 18 Å (SI
Appendix, Fig. S13).

Starting from the representative sequence of a Pfam family, homologous
templates are detected from the PDB library by LOMETSmetathreading server
(29), which consists of 11 individual threading programs, CEthreader (51),
CNFsearch (52), FFAS3D (53), HHpred (54), HHsearch (54), MUSTER (55), Neff-
MUSTER (5), PPAS (56), PROSPECT2 (57), SP3 (58), and SparksX (59). The
consensus contact and distance restraints are collected from the LOMETS tem-
plate alignments, which are combined with the sequence-based contact
potential as Eq. 1 to guide the I-TASSER structural assembly simulations (5).
Finally, the decoy conformations from the C-I-TASSER simulation trajectories
are clustered by SPICKER (60), where the largest cluster is further refined at
atomic level by FG-MD (fragment-guided molecular dynamics) (61) and
returned as the final model.

C-I-TASSER Model Quality Estimation. To estimate the model quality, we run
C-I-TASSER on 168 Pfam proteins that have known structures in PDB, where all
168 proteins were “Hard” targets according to LOMETS classification (56). The
data in SI Appendix, Fig. S2 demonstrate a strong correlation between the
TM-score of the C-I-TASSER models and the C-score of the folding simulations,
which has a Pearson correlation coefficient (PCC = 0.801). Here, the C-score is
defined by:

C–score ¼ w1 � ln 1
K
∑
K

i¼1

ZðiÞ
Z0ðiÞ

� �
þw2 � lnðSrÞ þw3 � lnðDcÞ, [2]

where ZðiÞ and Z0ðiÞ are the highest Z-score of the templates by the i-th
LOMETS2 threading program and the corresponding Z-score cutoff for distin-
guishing between good and bad templates. These Z-score–related parameters
describe the significance of the LOMETS threading alignments. Sr is the satis-
faction rate of top-L long-range contacts in the final model, that is,
Sr ¼ 1=nL∑nL

i¼1δi, where nL is the number of the top-L predicted contacts with
residue separation >24, δi ¼ 1 (or 0) if the i-th contact is satisfied (or not satis-
fied) in the final C-I-TASSER model. Dc measures the degree of structure con-
vergence in the C-I-TASSER simulation and is calculated by Dc¼ M

Mtot
=hRi,

where M is the number of decoys in the SPICKER cluster,Mtot is the total num-
ber of structure decoys generated in C-I-TASSER simulation, and hRi is the
average rmsd of the structure decoys to the cluster centroid. Weight parame-
ters (w1 ¼ 1:36, w2 ¼ 0:67, w3 ¼ 0:77) are decided by maximizing the PCC. If
we select a C-score cutoff of�2.5, theMatthews correlation coefficient on the
benchmark dataset reached amaximum of 0.614 and an FDR of only 6.96% (SI
Appendix, Fig. S4).

MetaSource Model Construction and Evaluation for Predicting the Source Biome
of Pfam Families. To identify the source biome that has the largest number of
homologous sequences for a given Pfam family, we construct a machine-
learning model named MetaSource (https://github.com/HUST-NingKang-Lab/

MetaSource). As depicted in SI Appendix, Fig. S14, the pipeline consists of four
consecutive steps:

1. Investigation of the biome-sequence–Pfam association: The sequences col-
lected from four biomes (Gut, Lake, Soil, and Fermentor) were used for sup-
plementing the homologous sequences of Pfam families (SI Appendix, Fig.
S14A). Furthermore, by comparing the homologous sequence number
before and after supplementing the metagenome sequence for Pfam fami-
lies, themarginal effect analysis was applied to performa quantitative assess-
ment on the biome-sequence–Pfam association (SI Appendix, Fig. S14C).

2. Training dataset construction using Pfam families with unsolved structure
(SI Appendix, Fig. S14D): The Pfam families foldable by C-I-TASSER (e.g.,
C-score ≥�2.5) are used as the training dataset for the prediction model
since the biome genomes have a stronger contribution to the MSA con-
struction for these Pfam families (SI Appendix, Fig. S14B). For the Pfam
families foldable by C-I-TASSER, the biome with highest Neff was used as
the data label after supplementing the homology sequences from four
biomes, respectively. The taxonomic profile on genus level for Pfam fami-
lies was used as the feature for the training set. To reduce the complexity
of the data, the genera with an average relative abundance less than
0.001 were filtered out. Furthermore, to select the features with a signifi-
cant difference in the distribution of multiple groups, the Kruscal–Wilcox
test was performed with a P value over 0.05 and q-value over 0.05 calcu-
lated by the Bonferroni method.

3. Constructing theMetaSource model (SI Appendix, Fig. S14E): Given our rela-
tively small dataset, we sought to identify a model that would tend toward
low variance, and the random forest algorithm was applied. First, to predict
whether the source biome could be one of the four common biomes (Gut,
Lake, Soil, Fermentor), a binary random forest algorithm was applied. The
positive dataset was 964 Pfam families foldable by C-I-TASSER, and the neg-
ative dataset was 7,736 (= 8,700 � 964) Pfam families with unsolved data.
Then, to predict the single biome that could effectively supplement homolo-
gous sequences for the specific Pfam family, a multilabel random forest clas-
sifier was applied using 964 Pfam families foldable by C-I-TASSER as training
data. To find the best combination of model parameters, grid search was
applied to exhaustively search over all parameter values. Then, the model
was trained by 20 cross-validation iterations, and in each iteration, the
model was trained on three-fourths of the dataset. Finally, the capacity to
predict the source biome that was left out was assessed.

4. Validating the MetaSource using the Pfam families with solved structure
(SI Appendix, Fig. S14F): To validate the performance of MetaSource pre-
diction model, the Pfam families with solved structure were used to evalu-
ate the performance of MetaSource on prediction of source biome. For
each Pfam family with known structure, we built MSA after querying the
homology sequences from Gut, Lake, Soil, Fermenter, and combined four
biomes, respectively. Those five MSAs were passed to C-I-TASSER to build
five structures individually and then were compared with experimental
structure. If the biome with highest Neff is consistent with the prediction
source biome using MetaSource, the prediction will be considered correct.
All the four steps are implemented by Python, using the scikit-learn pack-
age (version 0.22).

Data Availability. All study data are included in the article and/or SI Appendix.
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