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Text S1. Deep learning based contact prediction in C-I-TASSER.

Figure S1. Violin plots for portions of residues predicted by TMHMM2.0 to be within 
transmembrane helices (y-axis) for JCVI-syn3.0 proteins that are annotated (left) versus 
unannotated (right) by C-I-TASSER/COFACTOR with C-score>0.5 for specific GO terms in 
the MF (A), BP (B) and CC (C) aspects.

Figure S2. Structural alignment (see text for details) of the predicted structure of 
MMSYN1_0877 with the nine closest structural homologs identified in the Protein Data 
Bank (one candidate, PDB ID 4M58, is excluded from the alignment due to the presence of a 
large insertion). The structures shown here represent substrate binding domains for ECF 
systems targeting riboflavin (5KBW, 3P5N), biotin (4DVE), thiamine (4TKR, 3RLB, 5EDL), 
folate (4HUQ), pantothenate (4RFS), and hydroxymethyl pyridine (4HZU). Positions which 
are within 0.5 nm of the riboflavin in the 3P5N structure are highlighted with arrows. Note 
that only segments of the protein surrounding those contact points are shown. Numbering 
corresponds to the PDB structures rather than the original protein sequences; the ruler along 
the top shows positions in the 3P5N sequence.

Figure S3. A random PPI network for syn3.0, where 2483 of all 95703 protein pairs are 
randomly selected as the positive PPI pairs.

Text S1. Deep learning based contact prediction in C-I-TASSER. The C-I-TASSER pipeline 
incorporates residue-residue contact predicted from a multiple sequence alignment (MS)A by 
three in-house deep learning algorithms ResPRE 1, ResTriplet 2, and TripletRes 2. All three 
predictors sequence features derived from direct coupling analysis (DCA), which quantifies 
the co-evolution among amino acid positions in the MSA, and feed these features to deep 
residual convolutional neural networks (ResNets); but they differ in technical details of how 
the DCA features are generated and combined by ResNets.

In ResPRE, the DCA features are computed as a “precision matrix” (PRE), which is 
similar to an inverse covariance matrix3 but regularized by the L2 norm rather than the L1 
norm. This precision matrix is input to ResNets to predict an L*L contact map, where L is the 
length of target protein. In this contact maps, 1 means a pair of residue is in contact, i.e. 
distance between Cβ atoms <8Å, while a 0 in the contact map means the residue pair not in 
contact.

ResTriplet includes not only ResPRE but also another two in-house predictors, ResPLM 
and ResCOV. These two predictors have the same ResNet architecture as ResPRE, but the 
DCA features are calculated by pseudo-likelihood estimation (PLM) 4 and covariance (COV) 
5, respectively. The output of these three ResNet predictors are used as input features for a 
fourth ResNet, which outputs the final contact map. The four ResNets are trained one-by-one.

TripletRes uses the same set of PRE, PLM, and COV features as ResTriplet. Each of the 
three sets of features also correspond to a one ResNet, whose outputs are combined by the 
fourth ResNet to derive the final contact map. However, instead of training the four ResNets 
separately as in ResTriplet, TripletRes train all four predictors together in an end-to-end 

https://paperpile.com/c/3uBVtM/nLRp
https://paperpile.com/c/3uBVtM/4xn1
https://paperpile.com/c/3uBVtM/4xn1
https://paperpile.com/c/3uBVtM/vnQS
https://paperpile.com/c/3uBVtM/pbGi
https://paperpile.com/c/3uBVtM/gglR
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fashion. As shown in the recent 13th Critical Assessment of protein Structure Prediction 
(CASP13) community-wide experiment 2, ResTriplet slightly outperforms TripletRes for easy 
targets with more homologs while TripletRes outperforms ResTriplet for hard targets with 
less homologs; both ResTriplet and TripletRes outperform ResPRE.

https://paperpile.com/c/3uBVtM/4xn1
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Figure S1. Violin plots for portions of residues predicted by TMHMM2.0 to be within 
transmembrane helices (y-axis) for JCVI-syn3.0 proteins that are annotated (left) versus 
unannotated (right) by C-I-TASSER/COFACTOR with C-score>0.5 for specific GO terms in 
the MF (A), BP (B) and CC (C) aspects. The p-value is calculated by single-tailed unpaired t-
test to test if the average portion of transmembrane residues (dashed lines) for C-I-
TASSER/COFACTOR annotated proteins is significantly smaller than that for unannotated 
proteins.
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Figure S2. MMSYN1_0877 structurally resembles known riboflavin ECF substrate binding 
domains. (A) Structural alignment (see text for details) of the predicted structure of 
MMSYN1_0877 with the nine closest structural homologs identified in the Protein Data 
Bank (one candidate, PDB ID 4M58, is excluded from the alignment due to the presence of a 
large insertion). The structures shown here represent substrate binding domains for ECF 
systems targeting riboflavin (5KBW, 3P5N), biotin (4DVE), thiamine (4TKR, 3RLB, 5EDL), 
folate (4HUQ), pantothenate (4RFS), and hydroxymethyl pyridine (4HZU). Positions which 
are within 0.5 nm of the riboflavin in the 3P5N structure are highlighted with arrows. Note 
that only segments of the protein surrounding those contact points are shown. Numbering 
corresponds to the PDB structures rather than the original protein sequences; the ruler along 
the top shows positions in the 3P5N sequence. (B) UPGMA clustering of the proteins shown 
in panel A using percent identity at structurally aligned columns as a distance measure. (C) 
UPGMA clustering of the proteins shown in panel A using structural RMSD as a distance 
measure.
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Figure S3. A random PPI network for syn3.0, where 2483 of all 95703 protein pairs are 
randomly selected as the positive PPI pairs. The number of positive pairs in this random 
network is therefore identical to the SPRING-predicted PPI network shown in Figure 1. (A) 
Scatter plot of PPIs for all syn3.0 proteins ranked in ascending number of PPI partners, where 
a point means the protein pair is predicted to have a PPI. (B-C) Observed distribution 
(circles) for the number of PPI partners per protein in linear (B) and log (C) scale, and the 
power law fit (lines). In the inset,  is the reduced chi-squared statistic (lower values are 𝜒2

𝜈

better, with 0 being a perfect fit) and R2 is the coefficient of determination (the higher the 
better, with 1 being a perfect fit), respectively, to quantify the goodness of fit. Both metrics 
indicate that power law fits poorly to the distribution of the number of PPI partners per 
protein. (D-E) Histogram of  (D) and  R2 (E) values of 1000 randomly generated PPI 𝜒2

𝜈

networks for syn3.0 with the same number of positive pairs as the SPRING-predicted 
network. The vertical dash lines to the left (D) or right (E) of the histograms indicates 𝜒2

𝜈

=0.01 and  R2=0.99, respectively, in the SPRING-predicted network (Figure 4B), which is 
consistently better fitted to a power law distribution to all 1000 randomly generated PPI 
networks.
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