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Abstract

Genome-wide protein–protein interaction (PPI) determination remains a significant unsolved problem in
structural biology. The difficulty is twofold since high-throughput experiments (HTEs) have often a rela-
tively high false-positive rate in assigning PPIs, and PPI quaternary structures are more difficult to solve
than tertiary structures using traditional structural biology techniques. We proposed a uniform pipeline,
Threpp, to address both problems. Starting from a pair of monomer sequences, Threpp first threads both
sequences through a complex structure library, where the alignment score is combined with HTE data
using a naı̈ve Bayesian classifier model to predict the likelihood of two chains to interact with each other.
Next, quaternary complex structures of the identified PPIs are constructed by reassembling monomeric
alignments with dimeric threading frameworks through interface-specific structural alignments. The pipe-
line was applied to the Escherichia coli genome and created 35,125 confident PPIs which is 4.5-fold
higher than HTE alone. Graphic analyses of the PPI networks show a scale-free cluster size distribution,
consistent with previous studies, which was found critical to the robustness of genome evolution and the
centrality of functionally important proteins that are essential to E. coli survival. Furthermore, complex
structure models were constructed for all predicted E. coli PPIs based on the quaternary threading align-
ments, where 6771 of them were found to have a high confidence score that corresponds to the correct
fold of the complexes with a TM-score >0.5, and 39 showed a close consistency with the later released
experimental structures with an average TM-score = 0.73. These results demonstrated the significant
usefulness of threading-based homologous modeling in both genome-wide PPI network detection and
complex structural construction.

� 2021 Elsevier Ltd. All rights reserved.
Introduction

Most proteins conduct functions through
interactions, either permanently or transiently, with
other proteins. These interactions result in various
protein–protein interaction (PPI) networks, or
interactomes,1 that are essential to accommodate
td. All rights reserved.
many important cellular processes, ranging from
transcriptional regulation to signal transduction
and metabolic pathways. Experimental methods to
elucidate these networks are, however, limited and
many of them, including yeast-two hybrid and
tandem-affinity purification, have high error rates
up to 50%.2 Furthermore, these high-throughput
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experimental (HTE)methods only address the issue
of what proteins interact, but cannot provide infor-
mation as to where and how the proteins interact;
this information is critical for understanding the bio-
physical mechanisms of the interaction networks
and/or developing new therapies to regulate the
networks.3

While structure biology through X-ray and NMR
techniques could in principle provide the most
accurate structural information of PPIs, these
experiments are however often too expensive and
labor intensive to be applied on a genomic scale.
There are also many complexes that are currently
difficult to solve due to technical difficulties in
protein expression and crystallization. In
Escherichia coli, the most studied bacterial
organism of our time, for example, there are only
1559 out of the 4280 protein-coding genes (<36%)
that have the structures experimentally solved.4,5

The number of PPI complex structures is even less:
as of PDB database in Feburary 2021, E. coli only
have 707 PPI entries, which counts only for <7%
of the ~10,000 putative PPIs in E. coli.4,6 Homology
modeling has been proved to be an effective
approach to construct structure models by copying
the frameworks from homologous PPI templates.7

But until recently, the approach did not significantly
contribute to the elucidation of PPI networks, due to
the limited number of available homologous com-
plex structures in the PDB.7–9 Recent studies have
shown that the structural library of PPI interfaces
approaches to completion,10 implicating that most
of the complexes should have analogous interfaces
in the PDB; this settles a promising base for the
template-based structure modeling of a wide-
range of interactions if advanced threading meth-
ods can be developed to recognize such analogies.
There are also excellent efforts that tried to combine
interaction data from different resources for large-
scale PPI network identification;11–13 many of the
approaches however do not provide 3D structures
of the complexes.
In this work, we proposed a new hybrid pipeline,

Threpp, which extends the multiple-chain
threading protocol14 to address two central prob-
lems of protein interactomes (Figure 1). First, we
developed a newBayes classifier model to integrate
high-throughput proteomic data with multimeric
threading alignments to improve the accuracy and
coverage of PPI recognitions. 3D structures of pro-
tein complexes were then constructed for all the
predicted PPI pairs by threading the query
sequences through a non-redundant complex struc-
ture library. Different from several existing
homology-based methods that build complex struc-
tures by multiple-chain sequence comparison,15,16

which requires separate complex library construc-
tion and often misses specific binding modes,
Threpp deduces complex structure templates
directly from monomer chain threading followed by
oligomer-based mapping, which enables the
2

multiple bindingmode recognition through the entire
PDB library. It is also different from the template-
based docking7,9,12 which associates monomer
and dimer structures by pure structural similarity,
while Threpp detects PPI frameworks and the
monomer–dimer associations using profile-based
threading alignments which often have a higher
accuracy than pure structure comparisons. A simi-
lar Bayesian statistics approach was previously uti-
lized by Lee et al. for functional gene linkage
assignments, which allows integration of evidence
from diverse sources for more accurate network
construction.17 Nevertheless, the functional link-
ages do not necessarily indicate physical protein–
protein interaction, the latter of which is the focus
of this study. In addition, an additional focus of
Threpp is on the elucidation of the structural charac-
teristics of these identified PPIs through multi-chain
threading and monomeric structure recombination.
To examine the accuracy of Threpp, we carefully

benchmarked the strength and weakness of the
pipeline in PPI recognition on large-scale gold
standard datasets. As a case study, the pipeline
was applied to the E. coli genome to construct the
structural networks of the species, with results
revealing important functional implications of the
modeled interactome. The Threpp algorithm,
together with the structural models of all PPIs for
the E. coli genome, are made freely downloadable
to the community at https://zhanglab.ccmb.med.
umich.edu/Threpp/.
Results

Benchmark test of Threpp on PPI assignments

To train and test Threpp for PPI recognitions, we
collected a ‘Gold Standard’ (GS) set of PPIs in the
E. coli that have definite positive and negative
references as assigned by Hu et al.,18 where the
positive samples contain 763 experimentally-
established physical interactions obtained from
DIP,19 BIND20 and INTACT21 databases, and the
negative set consists of 134,632 putatively non-
interacting protein pairs compiled from the protein
pairs belonging to different cellular compartments
(see Table S1 in Supplementary Information, SI).
Here, membrane proteins were excluded due to
the close physical proximity (and potential physical
interaction) with both cytoplasmic and periplasmic
proteins.

PPI recognition by individual threading and HTE
methods. Table 1 and Figure 2 presents the true
positive rate (TPR) and false positive rate (FPR)
of PPI assignments for the test proteins by Threpp
based only on the Z-score of dimeric threading
alignments, Zcom (named as ‘Threpp_threading’,
see Methods), where the detail of the data is listed
in Table S2. Here, TPR ¼ TP=ðTP þ FNÞ and
FPR ¼ FP=ðFP þ TNÞ, with the standard true
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Table 1 Summary of PPI recognition by different methods.

Num of Preys Num of Baits Num of Detected interactions MCC TPR FPR

Individual datasets from high-throughput experiments and threading

Tandem affinity purification (Butland set) 1000 530 6067a 0.54 36.2% 0.05%

MALDI-TOF (Arifuzzaman set) 4339 4339 11,478a 0.41 32.4% 0.16%

Tandem affinity purification (Hu set) 4225 4225 5993a 0.35 24.4% 0.13%

Yeast-two hybrid (Rajagopala set) 3606 3305 2191a 0.27 9.6% 0.02%

Threpp_threading 4280 4280 28,263 0.41 26.2% 0.08%

Bayes combinations

Classifier without Threpp_threading 3459b 3459b 7872 0.58 42.4% 0.07%

Threpp 4280 4280 35,125 0.64 59.1% 0.14%

a With the repeated PPIs (e.g., A-B and B-A) removed from the 4 HTE datasets respectively, the numbers of PPIs become 6067,

11478, 5993 and 2191 from the original ones 6234, 11511, 5993 and 2234.
b The number of preys/ baits for the classifier without Threpp_threading is calculated by the union set of preys/baits from the HTE

datasets used to train the classifier.

Figure 1. Flowchart of Threpp for PPI recognition and structure construction. The pipeline consists of three steps of
threading-based PPI framework identification, Bayesian classifier PPI recognition, and PPI complex structure
construction by monomer/dimer template recombination.

W. Gong, A. Guerler, C. Zhang, et al. Journal of Molecular Biology 433 (2021) 166944
positive (TP), true negative (TN), false positive
(FP) and false negative (FN) calculated by
comparing the PPI predictions with the GS
assignments. As a comparison, we also list the
results from four sets of HTEs, including two
tandem-affinity purification (TAP) sets (‘Butland
3

set’22 and ‘Hu set’18), the ‘Arifuzzaman set’ derived
through matrix-assisted laser desorption/ionization
time-of-fight (MALDI-TOF) mass spectrometry,23

and the ‘Rajagopala set’ obtained by yeast two-
hybrid (Y2H) screening.24 While the TPRs of HTE
studies can be limited by the prey/bait proteins



Figure 2. True positive (TPR) and false positive (FPR) rates of PPI recognition by different approaches. The 4 HTE
datasets include two tandem-affinity purification (TAP) sets (‘Butland’22 and ‘Hu’18 sets), the ‘Arifuzzaman’ set derived
through matrix-assisted laser desorption/ionization time-of-fight (MALDI-TOF) mass spectrometry,23 and the
‘Rajagopala’ set obtained by yeast two-hybrid (Y2H) screening.24 The predictions of Bayesian classifiers combining
different sources of interaction evidences, with and without Threpp_threading, are shown in solid and dashed lines,
respectively.
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involved in the PPI assayed, it is not themajor factor
to decide the performance here. In fact, Table 1
shows that the ‘Butland set’ that only has 1000
preys and 530 baits produces a 4-times greater
TPR than the ‘Rajagopala set’ with a much larger
number of preys (3606) and baits (3305). Accord-
ingly, the MCC of the former is time times higher
than that of the latter. This is partly due to the ‘But-
land set’ having a higher portion of essential pro-
teins (19.8%), which participate in more PPIs than
non-essential proteins.
Table 1 (upper panel) also summarizes the

Matthew’s correlation coefficient (MCC) by the
individual methods, where MCC ¼ ðTP � TN � FP � FNÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP þ FNð Þ TP þ FPð Þ TN þ FNð Þ TN þ FPð Þp
represents a

balanced metric of precision and recall of the PPI
predictions. While the MCC of Threpp_threading
(0.41) is lower than that of the ‘Butland set’ (0.54),
it is comparable or slightly higher than other HTE
results, including the ’Arifuzzaman set’ (0.41), the
’Hu set’ (0.35), and the ‘Rajagopala set’ (0.27).
Bayesian classifier models increase PPI recogni-
tion accuracy of individual methods. In the lower
panel of Table 1, we list the results of combined
data from different methods by Threpp. First, we
used the Bayesian classifier to combine the data
from 4 HTE datasets, which results in a higher
MCC (=0.58) than all individual datasets. As
shown in Figure 2 (the dashed curve), both TPR
and FPR increase with the decrease of the
threshold, but the curve is above all individual
experimental datasets, demonstrating the
effectiveness of the Bayesian classifier model in
selecting correct PPIs. Nevertheless, the MCC
difference between the Bayesian model (0.58) and
4

the best HTE data from the ‘Butland set’ (0.54) is
modest.
After combining the HTE with the

Threpp_threading models, the MCC is increased
to 0.64, which is 18.5% higher than the best
individual dataset from the ‘Butland set’. This
difference in MCC corresponds to a p-value = 1.1
E�59 in the Student’s t-test, indicating that the
difference is statistically significant. The result
suggests that although the accuracy of the
threading score is not high on its own, the
modeling data is highly complementary to the HTE
evidences, where a naı̈ve Bayesian combination
of the computer-based and experimental data can
thus result in a highly significant improvement of
both the recall and the precision of the PPI
predictions.
Integrating threading model with HTE data for
E. coli network detection

The Escherichia coli genome contains in total
4280 protein-coding genes.25 As an application,
we used Threpp to evaluate all the 9,157,060 puta-
tive pairs by the Bayesian combination of dimeric
threading and HTE datasets.18,22–24 The 4 HTE
datasets are listed in Table S3 where the PPI with
at least one protein not belonging to the gold stan-
dard sets and the 4280 proteins was removed,
which does not affect the PPI prediction for the
4280 proteins. Despite the huge number of putative
interactions, only 4280� 2monomer threading runs
are needed with the interaction frameworks
assigned by a pre-calculated homology look-up
table for all templates, where the genome-scale
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network calculation is fast with ~2 hours on a 2000-
HPDL1000h core cluster.
The experiment yielded 35,125 confident PPIs

(Table S4), which has a likelihood rate score
above 1.87 by Threpp (see Eq. (3) in Methods). In
case where the HTE data are not available, only
Threpp threading scores are employed for the
targets with a stringent complex framework Z-
score cutoff of Zcom � 25. Our benchmark results
on the GS datasets show that the PPI
assignments with such likelihood score and Zcom

cutoffs have an average accuracy of 0.996.
Overall, these interactions are combined from
28,263 PPIs by Threpp_threading and 21,932 by
the four HTE datasets, where there are only 1153
PPIs in the intersection set of the two and 13,917
were dropped off by Threpp due to insufficient
likelihood rate score. These predicted interactions
contain 451 out of the 763 PPIs in the GS dataset,
which is significantly higher than the number of
GS PPIs predicted by either Threpp_threading
(200) or the four HTE approaches (346).
Here, if we ignore the threading alignments and

only combine the HTE data, the number of PPIs
detected by Threpp will be reduced to 7872 that
have the similar level of likelihood score, which
corresponds to only 22% of all PPIs identifiable by
the full Threpp pipeline. These data demonstrate
again a high complementarity of the technical
approaches of the computer-based threading
alignments to the HTE, and in particular the
impact of consideration of threading-based
approach on the hybrid PPI recognitions, although
we believe both approaches tend to detect
permanent PPIs.
PPI networks reveal dominant roles of
essential proteins in E. coli

The 35,125 high-confidence PPI assignments
detected by Threpp involve 3273 proteins. Based
on these PPIs, we constructed a comprehensive
E. coli protein interaction network (Figure 3(a)). In
the plot, nodes represent individual proteins with
edges being the interactions between proteins,
where self-loops (corresponding to orphan
proteins) and multiple edges (repeated PPI
predictions) have been excluded.

Node degree distribution is scale free. Figure 3
(b) shows the degree distribution of the PPI
networks for all 3273 involved proteins, which
follows a power-law of PðkÞ / k�1:33, where the
degree (k ) of a protein node equals to the number
of edges that have this node as one of its
endpoints. This network possesses two
outstanding characteristics which are important to
facilitate the biological functionality and evolution
of the E. coli genome. First, there are dominantly
more proteins in the genome with few interaction
partners; this property of PPI networks helps
5

enhance the robustness of the network against
random mutations in the evolution, as the overall
network is not influenced by the deletion and
insert of individual proteins. On the other hand,
the scale-free nature of the degree distribution
indicates that a non-trivial number of proteins,
which is significantly higher than what is expected
from a normal distribution, have many interaction
partners; this feature allows a substantial number
of important proteins to serve as hubs of
interactions and dominate the functional
interaction networks. The scale-free property of
E. coli PPI network is consistent with the previous
finding by Rajagopala et al. in their Y2H
experiment.24
Essential proteins interact with more partners
than non-essential ones. In Figure 3(c), we present
the degree distributions of PPI networks for two sets
of essential and non-essential proteins separately,
where the 303 essential proteins are taken from
Baba et al. that were found unable to be deleted
from the chromosome for the survival of E. coli
through the large-scale gene-deletion assay, and
the rest are considered as ‘non-essential’.26 While
both protein sets follow a stringent power-law distri-
bution (i.e., P kð Þ / k�0:60 for essential and
P kð Þ / k�1:34 for non-essential proteins), the aver-
age connectivity (or degree k ) per node is signifi-
cantly higher for essential proteins (33.5) than for
non-essential genes (18.5). In particular, the per-
centage of proteins with more than 34 interaction
partners in the essential proteins (30%) is much lar-
ger than that in the non-essential proteins (15%),
indicating that the essential proteins tend to serve
as the interaction hub which has resulted in their
significant functional importance for E. coli to sur-
vive. The significantly higher average connectivity
per node for essential proteins compared to non-
essential genes indicates that the hub character of
the essential proteins is well predicted.
The scale-free property of the predicted

interactome is not necessarily an indicator for the
PPI prediction accuracy. Although it is difficult for
a uniformly randomly generated network to follow
a scale-free distribution,27 it is still possible to for
an incorrect network to become scale-free if its gen-
eration follows the Barabasi-Albert preferential
attachment process.28 Meanwhile, as an indirect
verification for the accuracy of the predicted PPI,
we found that positively predicted protein pairs by
Threpp are more likely to share similar biological
pathways than negative pairs. Specifically, in terms
of Biological Process Gene Ontology (BP GO) term
annotation, positive PPI pairs has a significantly
higher average BP annotation similarity (average
F-measure = 0.439) than negative pairs (average
F-measure = 0.192), with p-values <1E�300 by
both t-test and Wilcoxon rank sum test, as shown
in Figure S2. This is consistently with the previous



Figure 3. PPI networks and degree distributions of the E. coli genome. (a) PPI networks constructed from 35,125
high-confidence PPIs by Threpp, which involve 3,273 proteins. (b) Distribution of PPI node degree (k ) that is defined
as the number of edges cross the considered node in the network. (c) PPI node degree distribution for essential
(circles) and non-essential (triangles) proteins. Lines in (b) and (c) are power law fit to.PðkÞ / k�c
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observation that true PPI proteins pairs are more
likely to share similar BP annotations than non-
interacting pairs.29

Betweenness centrality. To examine the
centrality of proteins in the PPI network, we define
the betweenness centrality (BC) of a protein node
m by30:

BC mð Þ ¼
X
s–t–m

r s; t jmð Þ
r s; tð Þ ð1Þ

where rðs; tÞ denotes the number of shortest paths from
nodes s to t , and rðs; t jvÞ is the number of the shortest
paths from s to t that cross through v . The sum in Eq. (1)
6

runs through all node pairs in the network excluding the
target node m. Here, although both BC and degree (k)
defined above are related to the number of interaction
partners for a given protein node, BC measures the
number of the shortest paths passing through one node
and reflects the information flow through the protein,
i.e., a protein with a higher BC tends to control more
functional flow of the PPI networks.
We also calculated the betweenness centrality

(BC) distributions of PPI networks for all 3273
involved proteins, and for two sets of essential
and non-essential proteins separately, with the
results shown in Figure S1(a) and (b). For the
former, it follows a power-law of PðBCÞ / BC�1:8,
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meaning that few proteins mediate many
information communications in the PPI network
and majority of network proteins mediate few.
Additionally, while both protein sets follow a
stringent power-law distribution (i.e.,
P BCð Þ / BC�1:4 for essential and
P BCð Þ / BC�1:8 for non-essential proteins), the
average BC per node is significantly higher for
essential proteins (0.04) than for non-essential
genes (0.02). In particular, the percentage of the
proteins whose BC more than 0.04 in the essential
proteins (21%) is much larger than that in the non-
essential proteins (13%), indicating again that the
essential proteins tend to serve as the information
communication hubs exerting their significant
functions for E. coli to survive.
In Table S5, we list the BC values for all protein

nodes in E. coli that have at least one interaction
partner in the Threpp predicted PPI networks. The
top ten nodes with the highest BCs are presented
in Table 2, which all correspond to the functionally
important proteins involving complex cellular
processes, including chaperone, elongation factor,
transcriptional regulatory and ribosomal proteins.
As an illustration, we present in Figure 4 a local

PPI network involving the DnaK protein, which has
the highest BC score (=0.049). DnaK is known to
serve as a chaperone to promote protein folding,
interaction and translocation, both constitutively
and in response to stress, by binding to unfolded
polypeptide segments.31 Here, RcsA, RcsB (with
the 10th largest BC value) and RcsD are all involved
in the Rcs phosphorelay pathway, a complex signal
transduction system. Through this pathway, phos-
phate travels from the phosphotransfer protein
RcsD to RcsB, which is essential to the regulation
of a variety of cellular processes in the bacteria. In
this example, the BC-based analysis helps to reveal
the key role that the DnaK protein exerts in connect-
ing the metabolic pathway (Rcs phosphorelay path-
way) and cell process (cell division regulated by
gene ftsA).32 Additionally, through searching for
the PPIs (in Figure 4) in PPI databases, we found
that there are 181 out of 217 (83%) PPIs described
in IntAct database (Table S8), indicating that
Threpp is complementary to existing PPI data-
Table 2 The ten proteins with the highest betweenness
centrality (BC) values.

ID BC Name of proteins

DnaK 0.049 Chaperone protein DnaK

TufA 0.037 Elongation factor Tu 1

RpsB 0.029 30S ribosomal protein S2

MetN 0.029 Methionine import ATP-binding protein MetN

LpdA 0.027 Dihydrolipoyl dehydrogenase

RplL 0.027 50S ribosomal protein L7/L12

TufB 0.027 Elongation factor Tu 2

RlmN 0.020 Dual-specificity RNA methyltransferase RlmN

RplV 0.018 50S ribosomal protein L22

RcsB 0.018 Transcriptional regulatory protein RcsB

7

bases. With the PPI network data provided by the
Threpp modeling, the BC analysis can be extended
to other systems for key protein and pathway iden-
tifications to facilitate various medical and pharma-
ceutical studies.

Structural modeling of protein interactome in
E. coli

For structural interactome, Threpp was used to
create 3D structure models for all the predicted
35,125 PPIs (see http://zhanglab.ccmb.med.
umich.edu/Threpp/Ecoli3D.zip), where 6771 are
found to have a Threpp S-score >13 (see https://
zhanglab.ccmb.med.umich.edu/Threpp/download/
Ecoli3D.txt for S-score values of all the PPI
complexes). Here, S-score is defined in Eq. (4) in
Methods for estimating model quality of Threpp
predictions. In a previous benchmark study,14 it
was shown that 78% of the dimer-threading models
with a S-score >13 can have a TM-score >0.5 to
their co-crystallized reference structures, indicating
correct quaternary structure fold.33 Below, we
selected two complexes from a DMSO reductase
(DmsAB) and a hetero-trimeric xanthine dehydro-
genase (YagRST), as illustrative examples (S-
score >13) to analyze in detail the Threpp models.
Although these PPIs have been shown critical to
the function of E. coli, the interactions were not
reported by any of the four high-throughput experi-
mental datasets. However, DmsA-DmsB interaction
is described in DIP, IntAct and STRING databases,
YagR-YagS in STRING, and the remaining interac-
tions YagR-YagT and YagS-YagT in both IntAct
and STRING.

Dimethyl sulfoxide reductase complex
(DmsAB). E. coli is well known to withstand
anaerobic conditions through the utilization of
correlated reductases in anaerobic media, while
DmsAB is a critical dimethyl-sufoxide reductase
complex that supports the bacterial growth in
anaerobic media via electron transport. Although
no structure has been solved for any of the protein
components, there are several experimental
evidences that can be used as indirect validations
of the Threpp structure modeling. For example,
DmsA and DmsB are known to contain one (FS0)
and four [4Fe-4S] clusters (FS1 to FS4)
respectively for electron shuttling,34 and DmsB is
anchored on the membrane via residues Pro80,
Ser81, Cys102 and Tyr104, where these resides
are also used for mediating the downstream elec-
tron transferals.35

Figure 5(a) shows a cartoon representation of the
Threpp model for the DmsAB complex, which has a
high-confidence S-score of 52.3. The monomeric
structure models for DmsA and DmsB were
derived from the templates of PDB ID 1EU1
(chain A) and 2VPZ (chain B), while the
orientation of the monomers was modeled using
2IVF (chains A and B) that was recognized by

http://zhanglab.ccmb.med.umich.edu/Threpp/Ecoli3D.zip
http://zhanglab.ccmb.med.umich.edu/Threpp/Ecoli3D.zip
https://zhanglab.ccmb.med.umich.edu/Threpp/download/Ecoli3D.txt
https://zhanglab.ccmb.med.umich.edu/Threpp/download/Ecoli3D.txt
https://zhanglab.ccmb.med.umich.edu/Threpp/download/Ecoli3D.txt


Figure 4. A local PPI network involving the chaperone protein DnaK (red) that mediates the Rcs phosphorelay
signaling pathway. The RcsA, RcsB and RcsD proteins (in green) positively regulate the expression of the cell division
gene ftsA (yellow) through the interactions with the DnaK protein.
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Threpp_threading as dimeric framework (see
Table S6). Although the monomer and complex
templates have been identified separately, the
TM-score and RMSD of the predicted model from
the dimer framework are 0.89 and 3.54 �A,
respectively, showing a high consistency of the
monomer threading and dimeric framework. The
framework protein, 2IVF, is a member of the
DMSO reductase family and serve as an
Ethylbenzene Dehydrogenaes from Aromatoleum
aromaticum. As highlighted in Figure 5(a), the
complex model for DmsAB also contains well-
shaped five [4Fe-4S] clusters, demonstrating the
close consistency with the insights from the
biochemical experiments.34,35

Trimeric iron-sulfur complex (YagRST). YagRST
is a molybdenum-containing iron-sulfur enzyme
located in the periplasm of E. coli, which functions
in cell maintenance by detoxifying aromatic
aldehydes to avoid cell damage.36 Structurally,
YagRST is a heterotrimer complex consisting of a
large 78.1 kDa molybdenum-containing subunit
(YagR), a medium 33.9 kDa FAD-containing sub-
unit (YagS), and a small 21.0 kDa 2Fe2S-
containing subunit (YagT). Built on the threading
alignments, Threpp first created monomeric struc-
ture models for YagR, YagS and YagT using tem-
plates with PDB ID 1RM6 (chain A), 1RM6 (chain
B) and 3SR6 (chain A), respectively. Accordingly,
three framework templates were collected for con-
structing the quaternary structural models, including
PDB ID 1FIQ (chains C and A, with a high S-score
of 142.8), 3HRD (chains C and D, S-score = 98.0),
and 1RM6 (chains A and B, S-score = 110.9)
(Table S6). Functionally, all the three framework
templates are related to molybdenum activities,
8

where the 1FIQ is a mammalian xanthine oxidore-
ductase which parallels yagTSR in its capabilities
as an aldehyde oxidoreductase; the 3HRD is char-
acterized as nicotinate dehydrogenase and con-
sists of similar subunits to YagRST, i.e., two larger
molybdopterin subunits, one medium FAD-
subunit, and a small FeS subunit; finally, the
1RM6 is another member of the xanthine oxidase
family from Thaura aromatica. This enzyme differs
however in its enzymatic role, demonstrating affini-
ties towards phenolic compounds rather than
aldehydes.34

The complex structure of YagRST was solved by
Correia et al. with a PDB ID: 5G5G, after the
structural modeling was performed; this
experimental structure can therefore be used as a
blind test of the Threpp models.37 In Figure 5(b),
we present a superimposition of Threpp-predicted
model (in Ca-trace) and the X-ray structure (car-
toon) of the YagRST complex, which has a TM-
score = 0.90 and interface RMSD = 2.01 �A. Here,
an interface RMSD was calculated on the Ca pairs
with an inter-chain distance <5�A, where the Threpp
model covers 96.7% of interface residues. This
result shows that a close similarity can be achieved
between the Threpp model and the native in both
global and interface structures.

Comparison of Threpp models on 39 solved PPI
complexes. In fact, there are in total 39 out of the
35,125 protein–protein complexes whose
structures have been experimentally solved in
PDB since 2016, which is the time when our PPI
structure library was constructed, on which the
Threpp structural modeling was based. Compared
to these experimental structures, the average TM-
score of the Threpp models is 0.73, where the



Figure 5. Illustrative examples of quaternary structure models by Threpp. (a) DmsA (cyan) and DmsB (yellow)
complex, where the predicted [4Fe-4S] clusters (FS0 to FS4) are highlighted as spheres with arrows indicating the
direction of electron transportation. The binding sites of the [4Fe-4S] clusters determined by biochemistry
experiments are shown as red sticks, where the membrane anchor residues Pro80, Ser81, Cys102 and Tyr104 in
DmsB are shown as blue sticks. (b) Trimeric iron-sulfur complex YagRST, where the Threpp model (red lines) is
superposed on the X-ray structure (cartoon) that was solved after the modeling was completed. The monomer chains
of YagR, YagS and YagT are shown in blue, green and yellow, respectively.
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average sequence identity between the target and
complex template in our modeling is 48%, and the
average sequence identity between the each
chain in the complex and the respective template
is around 34% (see Table S7 for detailed list of
the 39 proteins and https://zhanglab.ccmb.med.
umich.edu/Threpp/download/solved_structures.zip
for PDB format of the structural models). These
results further demonstrate the effectiveness of
Threpp to the quaternary structure prediction.
Additionally, we checked the modeled complexes
with TM-score �0.5 (5AEE_AB, 6EI9_AB,
6GFL_AB, 5DUD_BD, 5NJ9_BD, 4UHT_AB,
6AGL_AB, 5VM2_AB, 5ZE6_AB, 5DUD_AC,
5CNX_AB and 5XU7_AB, with all TM-score
�0.41), and found that all the monomers are well
modeled with TM-score >0.5, whereas the high
quality complex templates are not found by
Threpp in our database, as shown in Figure S3 for
a case study of 6GFL_AB. These data indicate
that modeling the inter-chain orientations is more
challenging than modeling individual chains, likely
due to the incompleteness of experimental
complex structures.38 Further, among these 39
complexes, 31 and 8 are homo- and hetero-
dimers. Threpp achieves average TM-scores of
0.71 and 0.81 for homo- and hetero-dimers, show-
ing that the threading process can handle the mod-
eling of both types of complexes.

Conclusion

We developed a new pipeline, Threpp, for
recognizing and structure modeling of protein–
protein interactions in organisms. Starting from a
pair of monomer sequences, dimeric threading
9

was extended to scan both sequences against a
complex structural library collected from the PDB.
The alignment score of the dimeric threading was
then combined with the high-throughput
experimental data through a naı̈ve Bayesian
classifier model to predict the likelihood of the
target sequences to interact with each other,
where the quaternary structure models of the
identified PPIs were built by reassembling the
monomeric alignments with the quaternary
template structural frameworks.
The pipeline was tested on a large set of protein

pairs containing 763 experimentally established
PPIs and 134,632 non-interacting protein pairs
compiled from different cellular compartments. It
was shown that although the threading-based
assignment does not create a higher accuracy of
PPI recognitions than the best high-throughput
experiments, the combination of them can result in
a significantly higher PPI recognition rate with the
Matthews correlation coefficient 18.5% higher than
the best dataset from the HTE; this increase is
mainly attributed to the complementarity of the
threading-based approach to the HTE results.
As an application, Threpp was extended to scan

all sequences in the E. coli genome and created
35,125 high-confidence PPI predictions, which is
4.5 times higher than that without using the
threading-based component scores (7872). This
significant data boost demonstrates the
usefulness of complimentary computer-based PPI
predictions in the interactome constructions
against the high-throughput experiments. A
detailed network analysis was performed on the
Threpp PPI predictions, which indicates that the
degree of the PPI networks strictly follows a

https://zhanglab.ccmb.med.umich.edu/Threpp/download/solved_structures.zip
https://zhanglab.ccmb.med.umich.edu/Threpp/download/solved_structures.zip
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power-law distribution, consistent with previous
studies.24 This scale free feature is essential to
the robustness of the PPI networks against evolu-
tion as the majority of proteins interact only with
few partners, which makes the networks less sensi-
tive to the deletion and insertion of local protein
nodes. On the other hand, a substantial amount of
functionally important proteins, which is significantly
higher than that expected from a normal degree dis-
tribution, are found in direct interactions with nearly
twicemore proteins than the non-essential proteins.
These proteins serve as the hubs of the PPI net-
works and play an essential role for E. coli survival.
To create structure models of the protein–protein

interactions, Threpp reassembles the monomer
models of each component obtained by single-
chain threading approaches on the dimeric
framework of the complex from the dimeric
threading alignments. 6771 out of the putative
35,125 PPIs are found to have a high confidence
score that corresponds to the correct fold of the
complexes with a TM-score >0.5. As a case
study, two examples from dimethyl sulfoxide
reductase (DmsAB) and trimeric iron-sulfur
(YagRST) complexes are examined in detail,
where the predicted models are found highly
consistent with the experimental data from
previous functional studies. Overall, 39 complex
structures were solved after the structure library
was created, where 72% of them have a TM-
score >0.5, resulting in an average TM-score 0.73
compared to the native (Table S7).
Historically, as a major technique of PPI

assignments, the HTE has a relatively high false
positive rate. Meanwhile, despite their accuracy,
traditional structural biology techniques (X-ray and
NMR) have more difficulties in determining the
PPI complex structures than that encountered for
monomer proteins. The incompleteness of
experimental complex structures put a limit on the
number of PPIs that can be detected by threading.
These difficulties have frustrated the progress of
the interactome studies compared to the success
of structural genomics that focuses on the
structure and function of monomer proteins. The
results presented in this study demonstrate
promising improvement on both aspects of
interactome through a hybrid pipeline that take
advantage of the technical complementarity
between computational threading and traditional
HTE datasets with analogy-based structure
modeling. The results presented in this study
demonstrates promising improvement on both
aspects of interactome through a hybrid pipeline
that combines computational threading and
traditional HTE datasets with analogy-based
structure modeling. Although the pipeline has
been applied only to E. coli in this study, it can be
readily extended to the study of other organisms.
With continuous improvements of the threading
techniques and the enlargement of PPI structure
10
datasets through new techniques such as cryo-
EM,39 the Threpp pipeline, which has been made
freely downloadable to the community, should find
the increasing usefulness on the studies of other
interactome systems.

Methods

Threpp consists of three consecutive steps of
multiple-chain threading, Bayesian classifier-
based interaction prediction, and complex
structure construction, where the flowchart is
depicted in Figure 1.

Dimer-threading based PPI recognitions

The multi-chain threading procedure in Threpp is
extended from a former version of SPRING that
was designed to detect complex structure
templates for protein pairs of known interactions.14

Initially, one of the target sequences (e.g. Chain A)
is threaded by HHsearch, a profile-profile sequence
aligner assisted with secondary structure,40 against
themonomeric template library from thePDB, to cre-
ate a set of putative templates (TAi , i = 1, 2, . . .) each
associated with a Z-score (ZAi ). Here, the Z-score is
defined as the difference between the rawalignment
score and themean in the unit of standard deviation,
where a higher Z-score indicates a higher signifi-
cance and usually corresponds to a better quality
of the alignment. In parallel, the opposite chain
(e.g. Chain B) is threaded separately by HHsearch
through the PDB, yielding a set of templates
(TBiÞwith Z-score (ZBi ). Then, all binding partners
of the TAi are gathered from the oligomer entry that
isassociatedwithTAi in thePDB. If anyof thebinding
partners of TAi is homologous to any of the high-
ranking templates of Chain B (TBi ), an interaction
framework is established for the target complex from
the oligomer associated with TAi (middle column in
Figure 1).
The homology comparisons between the PDB

templates are pre-calculated by an all-to-all PSI-
BLAST scan where a homology is defined
between two templates if the E-value <0.01. The
Z-score of the framework is defined as the smaller
of the two monomeric Z-scores. For heterodimer
proteins, this threading process is repeated using
Chain B as the starting probe to identify binding
partners and the frameworks. The confidence of
the target chain interactions by the threading
alignments is evaluated by the highest Z-score of
the complex, named Zcom, among all the
templates identified by the procedure.
Bayes classifier for multiple evidence
combination

To evaluate if the putative chains (A and B)
interact, we combined the Zcom score with the
interaction evidence from HTEs through a model of
the naı̈ve Bayes classifiers.41 With the classifier,
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Threpp_threading is encoded by a single binary fea-
ture which equals ‘1’ if Zcom � 25 and otherwise ‘0’.
Here, to determine the threshold of 25, we used the
positive and negative gold standard sets (https://
zhanglab.ccmb.med.umich.edu/Threpp/down-
load/groundtruth.zip),whichwere randomly split into
five subsets of equal size. For each subset, we iden-
tified the threshold which maximizes the Matthew’s
correlation coefficient. The resulting average thresh-
old was subsequently rounded to the closest multi-
ple of five, yielding a Zcom threshold value of 25.
Repeating this experiment with different subsets
did not significantly alter the identified threshold.
Furthermore, using a threshold of 20 or 30 onlymar-
ginally impacts the overall performanceof the result-
ing classifier. In an upcoming study, we applied our
method to the Yeast genome, which confirms the
same threshold. Data from each of the experimental
datasets is also represented by a binary feature
which equals ‘10 if the corresponding experiment
indicates that thepair of proteins interacts and other-
wise ‘00. In the present study, we identified four
experimentally derived PPI networks for E. coli from
the literature,18,22–24 although more HTE features
can be combined similarly when available.
The classifier is parameterized using the positive

and negative gold standard sets, which are
randomly split into five subsets with equal size,
where four of the five subsets are used to
estimate the conditional probabilities for the
positive (P) and negative (N) samples by

pP f ið Þ ¼ nP ðf i Þ=nP

pN f ið Þ ¼ nN f ið Þ=nN

�
ð2Þ

where nP Nð Þðf iÞ is the number of positive (negative)

interacting cases for a given score of f i of the ith feature
(i ¼ 1; � � � ; 5 represents the five features from
Threpp_threading and HTE datasets), and nP and nN

are the total numbers of positive and negative interacting
cases in the training sample, respectively. The
remaining subset of protein pairs are used for testing in
Results, where the likelihood of interaction is evaluated by

L f 1; � � � ; f 5ð Þ ¼
Y5
i¼1

½pP ðf i Þ=pN Þf i Þ�: ð3Þ

We note that the likelihood ratio is derived solely
from features that are available, indicating that the
sample protein pairs are interacting. The
remaining features are excluded (i.e. treated as
missing evidence) since the unavailability of an
experimental confirmation or threading alignments
does not indicate whether a pair of proteins
interacts or not.
Structure assembly of protein complexes

If the proteins are deemed to interact, the complex
structures are constructed by structurally aligning
the top-ranked monomer templates of Chain A and
B to all putative interacting frameworks using TM-
11
align.42 The structural alignment is built on the sub-
set of interface residues. The resulting models are
evaluated by the Threpp score of
S-score ¼ min ZA;ZBð Þ þ w1TMmin þ w2Econtact ð4Þ
where ZAðBÞ is the Z-score of the monomer threading

alignment by HHsearch for Chain A(B); TMmin is the
smaller TM-score returned by TM-align when aligning
the top-ranked monomer models of A and B to the
interaction framework; Econtact is a residue-specific,
atomic contact potential derived from 3897 non-
redundant structure interfaces from the PDB using the
formula of RW.43 The weight parameters w1 and w2 are
set to 12.0 and 1.4 through a training set of protein com-
plexes tomaximize themodeling accuracy of the interface
structures.
GO similarity analysis for predicted PPI

As a systematic analysis on whether interacting
protein pairs are more likely to participate in the
same or similar biological pathways, function
annotations for E. coli proteins are extracted from
UniProt Gene Ontology Annotation (UniProt-GOA
version 2021-02-12). In total, there are 3394
E. coli proteins that with at least one BP GO
annotation among all E. coli proteins analyzed in
this study. These 3394 proteins result in
5,757,921 protein pairs, among which 27,979 are
positive PPI pairs predicted by Threpp and the
remaining 5,729,942 are negative PPI pairs. Since
UniProt-GOA usually only includes child BP terms,
we propagate all BP annotations towards the root
of GO hierarchy to obtain the full set of BP
annotations. In addition to BP GO terms, there are
also Molecular Function (MF) and Cellular
Component (CC) GO annotations for E. coli.
However, CC is not analyzed here because the
E. coli CC is too simple, i.e., the E. coli cell is not
divided into cellular compartments by organelle
membranes. This analysis does not consider MF
either, because our previous study found that PPI
correlates poorly with MF similarity.29

To quantify the similarity between the set of all BP
terms, BPA and BPB for the Protein A and B,
respectively, the F-measure, also known as
F1-score is calculated according to the definition
in Critical Assessment of Function Annotation
(CAFA) challenge44:
F ¼ 2 � jBPA \ BPB j
jBPAj þ jBPB j ð5Þ
where |BPA|, |BPB| and |BPA \ BPB| are the number of
terms in GO terms sets BPA, BPB and their
intersections, respectively. F-measure ranges between
0 and 1, where 1 stands for a perfect overlap between
two sets of GO terms.

https://zhanglab.ccmb.med.umich.edu/Threpp/download/groundtruth.zip
https://zhanglab.ccmb.med.umich.edu/Threpp/download/groundtruth.zip
https://zhanglab.ccmb.med.umich.edu/Threpp/download/groundtruth.zip
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