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Supplementary Text 1. Benchmark set using synthesized density maps 
To evaluate DEMO-EM, we collected a set of 357 non-redundant proteins from the PDB with the domain boundary 

assigned by DomainParser1 (or SCOPe2 and CATH3 when available). The length of these proteins ranges from 99 to 1,693 
residues with 2 to 12 domains which covers the majority of single-chain multi-domain proteins in the PDB. The density 
maps of these proteins are simulated according to the experimental structures by EMAN24(Supplementary Text 2), with the 
resolution randomly selected from 2 to 10 Å and a grid spacing of 1 Å/voxel (Supplementary Fig. 2a). Two separate tests 
are performed to assemble experimental domain structures extracted from the full-length target structures and domain 
models predicted by D-I-TASSER5. For experimental domain structure assembly, all domains were randomly rotated and 
translated as rigid bodies before assembly. When using D-I-TASSER to model the domain structures, all homologous 
templates of a sequence identity >30% to the query have been excluded; this resulted in domain models with variable quality 
and the TM-score6 ranging from 0.22 to 0.96 (see Supplementary Fig. 2b for a histogram of TM-score distribution). The 
average TM-score of these predicted domain models is 0.77, and there are 46 out of 357 proteins have at least one domain 
with incorrect global topology (TM-score <0.5).  
 
Supplementary Text 2. Implementation of EMAN2 to generate synthesized density maps 

EMAN7 is a scientific image processing package, which mainly focuses on single particle reconstruction from 
transmission electron microscopy images. EMAN24 is the successor to EMAN1, with a fully refactored image processing 
library, and a wide range of features to make it much more flexible and extensible than EMAN1. For the 357 benchmark 
proteins and the 425 training proteins, we used the e2pdb2mrc.py program from the EMAN2 package (version 2.31) to 
generate synthesized EM density maps. 

The following command was used to create the density maps: 
e2pdb2mrc.py inputfile.pdb outputfile.mrc -A voxelsize -R resolution 

where “inputfile.pdb” is PDB file to convert, and it is the native structure in our experiment; “outputfile.mrc” is the output 
file for the generated density map; “voxelsize” is the Angstroms per voxel in the output, and it is set to 1 in our experiment; 
“resolution” is the resolution of the created density map, which is randomly selected from 2 to 10 Å for each protein in our 
experiment. 
 
Supplementary Text 3. Description of TM-score 
 TM-score6 is a metric for evaluating the topological similarity between protein structures, which can be calculated by 

TM˗score = max
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where 𝐿target is the amino acid sequence length of the target protein, 𝐿aligned is the length of the aligned residues to the 
reference (native) structure, 𝑑𝑖 is the distance between the i-th pair of aligned residues, 𝑑0�𝐿target� = 1.24�𝐿target − 153 −
1.8 is a scale to normalize the match difference, and ‘max’ refers to the optimized value selected from various rotation and 
translation matrices for structure superposition. The value of TM-score ranges in (0,1], where 1 indicates that the two 
structures are identical. Stringent statistics showed that TM-score >0.5 corresponds to a similarity with two structures having 
the same fold and/or domain orientations8. Our assessment will be mainly on TM-score because TM-score is protein 
length-independent and its value is more sensitive to the fold and domain orientation similarities of the predicted model 
relative to the native, compared to RMSD. 
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It should be noted that TM-score can be discrepant to the widely used root-mean-square deviation (RMSD) for some 

protein structure pairs. This is mainly because by definition, RMSD (=�1

𝑁
∑ 𝑑𝑖

2𝑁
𝑖=1 ) is calculated as an average of 

distance error (𝑑𝑖) with equal weight over all residue pairs. Therefore, a big local error on a few residue pairs can result 
in a quite large RMSD. On the other hand, by putting 𝑑𝑖 in the denominator of Eq. (S1), TM-score naturally weights 
smaller distance errors stronger than the larger distance errors. Therefore, TM-score value is more sensitive to the 
global structural similarity rather than to the local structural errors, compared to RMSD. Another advantage of 
TM-score is the introduction of the scale 𝑑0�𝐿target� = 1.24�𝐿target − 153 − 1.8  which makes the magnitude of 
TM-score length-independent for random structure pairs, while RMSD is a length-dependent metric6. Due to these reasons, 
our discussion of modeling results is mainly based on TM-score. Since RMSD is intuitively more familiar to most readers, 
however, we also list RMSD values when necessary in the manuscript. 

 
Supplementary Text 4. Analyses of cases with domain accuracy decreased after flexible assembly 
 As shown in Fig 2d, TM-score of 810 out of 890 individual domain models were improved after the DEMO-EM 
flexible assembly. The remaining 80 (=890-810) domain models with TM-score decreased after the flexible assembly and 
refinement by DEMO-EM come from 72 test targets. Detailed analyses (Supplementary Fig. 3) show that 34.7% of them 
include ≥ 1 initial domain model(s) with incorrect fold, where the incorrect initial domain structures can result in incorrect 
domain-map match which misguides the subsequent domain assembly and refinement simulations. For other 36.6% of these 
cases, although all domains were correctly modelled by D-I-TASSER with TM-score >0.5, the full-length domain models 
created by DEMO-EM rigid-body assembly obtain a TM-score <0.7 due to the incorrect position and orientation of some 
domains in the density map, which also affect the algorithm to detect the unreasonably fold regions for remodeling. For the 
rest cases, the decreased TM-score of domain models was mainly caused by the low-resolution density map as 18 out of 21 
cases employed density maps with resolution >6Å. 
 
Supplementary Text 5. Performance of DEMO-EM for large proteins, cases with discontinuous domains, and proteins 
with incorrect domain models 

Although the degrees of freedom and searching space usually increases with the number of domains for both domain 
assembly and full-length model refinement, the quality of the final models by DEMO-EM does not significantly decrease 
with an increasing number of domains for both experimental and predicted domain model assemblies (Supplementary 
Tables 1 and 2). In particular, the full-length models assembled using predicted domain structures obtain an average 
TM-score of 0.84 for proteins with 3 or more domains, 91.6% of which have a final model TM-score >0.5. This data 
demonstrates the ability of DEMO-EM for handling large complex structures of multi-domain proteins and relative long 
sequence proteins. In addition, proteins with discontinuous domains are usually difficult to model as they have several parts 
separated in sequence which increases the difficulty in individual domain modeling and inter-domain distances prediction. 
However, DEMO-EM correctly assembled nearly all the cases of discontinuous domains using experimental domain models, 
with an average TM-score=0.99 identical to that of the continuous domain model assembly (Supplementary Table 1). This 
is probably due to the constraints brought by the additional linkers which help guide the discontinuous domain structure 
assembly (see Eq. 4 in Methods and Supplementary Fig. 22). When assembling predicted domain models, however, 
DEMO-EM achieves an average TM-score of 0.80 lower than the continuous domain assembly results (TM-score=0.86, 
Supplementary Table 2), due to the incorrect domain topologies (19.8% of the domains) and the modeling errors of 
predicted models in the tail and linker regions which affect the packing the segment structures. Furthermore, longer proteins 
are usually more difficult to model for most of the protein structure prediction methods due to the larger conformational 
space to search. However, when splitting the sequence into domains for independently modeling, the domain models created 
by D-I-TASSER obtains an average TM-score of 0.79 for the large proteins with sequence length ranges from 500 to 1,693, 
where 94.1% of the domains has correct fold with TM-score >0.5. The full-length models assembled by DEMO-EM using 
these predicted domain models achieve an average TM-score of 0.81, 93.5% of which have a final model TM-score >0.5. 
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These results suggest that the DEMO-EM pipeline can effectively handle the proteins with relative long sequences. Finally, 
incorrect domain models probably lead to poor final models as they can negatively affect the domain assembly and 
refinement simulations. However, DEMO-EM successfully assembled full-length models for 94.1% of the test proteins while 
only 87.1% of the test cases have all initial domain models with correct fold. We found that 60.9% of the cases which have 
≥ 1 domain(s) with incorrect fold resulted in final full-length models with correct global fold. This data indicates that 
DEMO-EM has the ability to assemble correct full-length models even starting from low-quality domain structures for some 
targets. 

 
Supplementary Text 6. Implementation of MDFF, Rosetta, and MAINMAST programs 

MDFF is cryo-EM density-map guided protein structure fitting and refinement program through a combined search 
process of Monte Carlo simulation, conjugate-gradients minimization, and simulated annealing molecular dynamics 
simulations9,10. Starting from the initial full-length model built by matching each domain model into density maps using 
Situs11, the direct MDFF9 and cMDFF10 programs were applied for proteins with cryo-EM density maps at resolution ≥5Å 
and <5Å, respectively. The direct MDFF was carried out by a domain rigid-body assembly with domain restraints for up to 
200 ps by setting “-numsteps 200000”, followed by a three-step flexible fitting which includes two molecular dynamics (MD) 
simulations for up to 500 ps by setting “-numsteps 500000” and an final energy minimization by setting “-minsteps 2000”. 
The settings were determined according to the second section named “A simple MDFF example” and the fourth section 
named “MDFF with Domain Restraints” in the tutorial (March 28, 2019). In the domain rigid-body assembly and each MD 
simulation of the flexible fitting, the energy minimization was also performed by setting “-minsteps 2000”. According to the 
parameters suggested previously12, the electron density term with a weight of 1.0, 1.0, and 0.3 was set for the rigid-body 
assembly and the two MD simulations of the flexible fitting, respectively, and a weight of 0.3 was used in the final energy 
minimization13. In cMDFF, Gaussian blurred maps were created using half-width σ from 5 Å to 0 Å with a decreased step 
of 1 Å, thus yielding 6 maps, including the original maps. The direct MDFF with up to 200 ps for each MD simulation of the 
flexible fitting were performed for each of the 6 maps to achieve convergence. In our experiment, the MDFF simulations 
were performed using NAMD (version 2.14b1), and the necessary files for MDFF and MDFF simulations were 
generated/analyzed using VMD (version 1.9.4a38). 

Taking the target PDB named as “example.pdb” which includes 2 domains as an example, the necessary input files 
were generated through VMD according to the PDB file and the cryo-EM data: 

1. Perform the following command to generate a PSF file (example_autopsf.psf) containing all the connectivity 
information and partial atomic charges required by NAMD and a PDB file (example_autopsf.pdb) through the 
AutoPSF plugin (version 1.8): 

mol new example.pdb 
package require autopsf 
resetpsf 
autopsf -protein example.pdb 

2. Run the following command to generate the DX file (example_autopsf-grid.dx) defining the cryo-EM density 
restraint: 

package require mdff 
mdff griddx -i density_map.mrc -o example_autopsf-grid.dx 

where “density_map.mrc” is the cryo-EM density map.  
3. Run the following command to generate a PDB file (example_autopsf-grid.pdb) containing the per-atom scaling 

factors of the cryo-EM restraint: 
mdff gridpdb -psf example_autopsf.psf -pdb example_autopsf.pdb -o example_autopsf-grid.pdb 

4. Perform the following command to define restraints for ∅ and 𝜓 dihedral angles for amino acid residues in 
helices or sheets, as well as restraints for hydrogen bonds involving backbone atoms from the same residues: 

5. Generate restraints to prevent cis/trans peptide transitions and chirality errors through the following command: 
mol new example_autopsf.psf 
mol addfile example_autopsf.pdb 
cispeptide restrain -o example-extrabonds-cispt.txt 
chirality restrain -o example-extrabonds-chaira.txt 
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6. Select each group of atoms and set their beta column to define the domain through the following command: 
set sel [atomselect top "all"] 
$sel set beta 0 
$sel set occupancy 0 
set sel1 [atomselect top "segname 1 and name CA"] 
$sel1 set beta 1 
$sel1 set occupancy 1 
set sel2 [atomselect top "segname 2 and name CA"] 
$sel2 set beta 2 
$sel2 set occupancy 1 
$sel writepdb domain.pdb 

Here, two domains were assigned (beta 1 and 2) and kept rigid during the MDFF simulations. 
After generating the input files through the above commands, the following command was used to create the NAMD 

configuration file to run the MDFF domain rigid-body assembly: 
mdff setup -o domain -psf example_autopsf.psf 

-pdb example_autopsf.pdb 
-griddx example_autopsf-grid.dx 
-gridpdb example_autopsf-grid.pdb 
-extrab {example-extrabonds.txt example-extrabonds-cispt.txt example-extrabonds-chaira.txt} 
-gscale 1.0 
-minsteps 2000 
-numsteps 200000 

Edit the configuration file created by the above command by adding the following lines anywhere: 
tmd on 
tmdfile domain.pdb 
tmdk 500. 
tmdfirststep 2001 
tmdlaststep 202000 
tmdoutputfreq 1000 

Run NAMD to perform the MDFF simulation using the configuration file, i.e., run the following command: 
namd2 xxx.namd > xxx.log 

where “xxx.namd” is the NAMD configure file generated by VMD, and “xxx.log” is the log file of the simulation. 
When the domain rigid-body assembly was completed, the necessary input files for the flexible refinement were 

generated according to the above commands for the domain rigid-body assembly, and the following command was employed 
to generate the NAMD configuration file for the flexible refinement in the direct MDFF: 

mdff setup -o adk -psf xxx_autopsf.psf  
-pdb xxx_autopsf.pdb  
-griddx xxx_autopsf-grid.dx  
-gridpdb xxx_autopsf-grid.pdb  
-extrab {xxx-extrabonds.txt xxx-extrabonds-cispt.txt xxx-extrabonds-chaira.txt}  
-gscale 1.0  
-minsteps 2000 
-numsteps 500000 

mdff setup -o adk -psf xxx_autopsf.psf  
-pdb xxx_autopsf.pdb  
-griddx xxx_autopsf-grid.dx  
-gridpdb xxx_autopsf-grid.pdb  
-extrab {xxx-extrabonds.txt xxx-extrabonds-cispt.txt xxx-extrabonds-chaira.txt}  
-gscale 0.3  
-minsteps 2000 
-numsteps 500000  
-step 2 

mdff setup -o adk -psf xxx_autopsf.psf  
-pdb xxx_autopsf.pdb  
-griddx xxx_autopsf-grid.dx  
-gridpdb xxx_autopsf-grid.pdb  
-extrab {xxx-extrabonds.txt xxx-extrabonds-cispt.txt xxx-extrabonds-chaira.txt}  
-gscale 0.3  
-minsteps 2000  
-numsteps 0  
-step 3 

where “-numsteps” of the first two steps was set to 200000 in cMDFF, and the MDFF simulation of each step was performed 
by run NAMD using the corresponding configuration file. To avoid the MDFF web tutorial changing, we have put the 
current version at https://zhanggroup.org/DEMO-EM/data_set/benchmark51/tutorial_mdff.pdf. It should be noted that the 
process of MD simulation in MDFF is sensitive to the quality of initial models and may fail or quit prematurely without 
reaching the given number of steps if starting from a poor-quality initial model. In our experiment, MDFF had failed on 

https://zhanggroup.org/DEMO-EM/data_set/benchmark51/tutorial_mdff.pdf
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many targets when directly starting from the models created by Situs on the I-TASSER domains because of the broken 
linkers between two domains with C𝛼-C𝛼 bond-length significantly higher than 3.8 Å. 

To solve this problem, we used the following procedure to quickly rebuild the domain linkers for the Situs models: 
When a C𝛼-C𝛼 bond gap (>4.0 Å) is identified, both sides of residues near the gap are gradually released until the two 
anchor residues could be connected (i.e., with distance < 3.5(𝑙 + 1), where l is the number of released residues)14. Next, the 
C𝛼 trace of the released residues is regenerated by self-avoiding random walks of C𝛼-C𝛼 vectors with bond-length=3.8 Å, 
where other backbone (N, C, O) and sidechain atoms are added using FASPR15. Finally, a short Metropolis Monte Carlo 
simulation is performed to refine the linker conformation under the guidance of a potential containing a C𝛼 clash term, a 
statistical torsion-angle potential from Ramachandran plots16,17, an orientation-dependent sidechain contact potential, and a 
statistical N-C𝛼-C bond angle potential, where the linker model with the lowest energy is finally selected and refined with 
PULCHRA18. After the linker reconstruction, it was found that MDFF can be performed for all the cases, although the 
domain rigid-body assembly step may still quit prematurely for few cases due to the bad local structures inherited from the 
I-TASSER models. 

Rosetta builds cryo-EM models also through Monte Carlo simulations and Limited-memory Broyden–Fletcher–
Goldfarb–Shanno (L-BFGS) as guided by the Rosetta all-atom force field19. Rosetta ver. 3.12 
(rosetta_bin_linux_2020.50.61505_bundle) was used. Started with the same initial models constructed from Situs11, we first 
use the following protocol to further optimize the position and orientation of each domain in the density map by providing 
the flag “-edensity::realign min”: 

$ROSETTA/source/bin/score_jd2. linuxgccrelease \ 
-database $ROSETTA/database/ \ 
-in::file::s pose.pdb pose.pdb \ 
-ignore_unrecognized_res \ 
-edensity::mapfile densityMap.mrc \ 
-edensity::mapreso 5.0 \ 
-edensity::grid_spacing 2.0 \ 
-edensity::fastdens_wt 35.0 \ 
-edensity::cryoem_scatterers \ 
-edensity::realign min \ 
-out::pdb \ 
-crystal_refine 

All domain models are then combined together to get an initial full-length model, and the above protocol is employed again 
to optimize the position and orientation of the initial full-length model in the density map. Finally, the following protocol 
described in https://faculty.washington.edu/dimaio/files/rosetta_density_tutorial_aug18_2.pdf is used to flexibly refine the 
full-length model according to the density map: 

$ROSETTA/source/bin/rosetta_scripts.linuxgccrelease \ 
-database $ROSETTA/database/ \ 
-in::file::s pose.pdb \ 
-parser::protocol A_asymm_refine.xml \ 
-parser::script_vars denswt=35 rms=1.5 reso=3.4 map=half1.mrc testmap=half2.mrc \ 
-ignore_unrecognized_res \ 
-edensity::mapreso 3.4 \ 
-default_max_cycles 200 \ 
-edensity::cryoem_scatterers \ 
-beta \ 
-out::suffix _asymm \ 
-crystal_refine 

where “A_asymm_refine.xml” is shown below: 
<ROSETTASCRIPTS> 
   <SCOREFXNS> 
      <ScoreFunction name="cen" weights="score4_smooth_cart"> 
         <Reweight scoretype="elec_dens_fast" weight="20"/> 
      </ScoreFunction> 
      <ScoreFunction name="dens_soft" weights="beta_soft"> 
         <Reweight scoretype="cart_bonded" weight="0.5"/> 
         <Reweight scoretype="pro_close" weight="0.0"/> 
         <Reweight scoretype="elec_dens_fast" weight="%%denswt%%"/> 
      </ScoreFunction> 
      <ScoreFunction name="dens" weights="beta_cart"> 
         <Reweight scoretype="elec_dens_fast" weight="%%denswt%%"/> 
         <Set scale_sc_dens_byres="R:0.76,K:0.76,E:0.76,D:0.76,M:0.76,C:0.81,Q:0.81,H:0.81,N:0.81,T:0.81, 

S:0.81,Y:0.88,W:0.88,A:0.88,F:0.88,P:0.88,I:0.88,L:0.88,V:0.88"/> 

https://faculty.washington.edu/dimaio/files/rosetta_density_tutorial_aug18_2.pdf
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      </ScoreFunction> 
   </SCOREFXNS> 
   <MOVERS> 
      <SetupForDensityScoring name="setupdens"/> 
      <LoadDensityMap name="loaddens" mapfile="%%map%%"/> 
      <SwitchResidueTypeSetMover name="tocen" set="centroid"/> 
      <MinMover name="cenmin" scorefxn="cen" type="lbfgs_armijo_nonmonotone" 
         max_iter="200" tolerance="0.00001" bb="1" chi="1" jump="ALL"/> 
      <CartesianSampler name="cen5_50" automode_scorecut="-0.5" scorefxn="cen" 
         mcscorefxn="cen" fascorefxn="dens_soft" strategy="auto" fragbias="density" 
         rms="%%rms%%" ncycles="200" fullatom="0" bbmove="1" nminsteps="25" temp="4" fraglens="7" 
         nfrags="25"/> 
      <CartesianSampler name="cen5_60" automode_scorecut="-0.3" scorefxn="cen" 
         mcscorefxn="cen" fascorefxn="dens_soft" strategy="auto" fragbias="density" 
         rms="%%rms%%" ncycles="200" fullatom="0" bbmove="1" nminsteps="25" temp="4" fraglens="7" 
         nfrags="25"/> 
      <CartesianSampler name="cen5_70" automode_scorecut="-0.1" scorefxn="cen" 
         mcscorefxn="cen" fascorefxn="dens_soft" strategy="auto" fragbias="density" 
         rms="%%rms%%" ncycles="200" fullatom="0" bbmove="1" nminsteps="25" temp="4" fraglens="7" 
         nfrags="25"/> 
      <CartesianSampler name="cen5_80" automode_scorecut="0.0" scorefxn="cen" 
         mcscorefxn="cen" fascorefxn="dens_soft" strategy="auto" fragbias="density" 
         rms="%%rms%%" ncycles="200" fullatom="0" bbmove="1" nminsteps="25" temp="4" fraglens="7" 
         nfrags="25"/> 
      <ReportFSC name="report" testmap="%%testmap%%" res_low="10.0" res_high="%%reso%%"/> 
      <BfactorFitting name="fit_bs" max_iter="50" wt_adp="0.0005" init="1" exact="1"/> 
      <FastRelax name="relaxcart" scorefxn="dens" repeats="1" cartesian="1"/> 
   </MOVERS> 
   <PROTOCOLS> 
      <Add mover="setupdens"/> 
      <Add mover="loaddens"/> 
      <Add mover="tocen"/> 
      <Add mover="cenmin"/> 
      <Add mover="relaxcart"/> 
      <Add mover="cen5_50"/> 
      <Add mover="relaxcart"/> 
      <Add mover="cen5_60"/> 
      <Add mover="relaxcart"/> 
      <Add mover="cen5_70"/> 
      <Add mover="relaxcart"/> 
      <Add mover="cen5_80"/> 
      <Add mover="relaxcart"/> 
      <Add mover="relaxcart"/> 
      <Add mover="report"/> 
   </PROTOCOLS> 
   <OUTPUT scorefxn="dens"/> 
</ROSETTASCRIPTS> 

 
MAINMAST20,21 is a de novo method for main-chain modeling from density maps at resolution <5Å by capturing the 

distribution of salient density points in the map. Following the instructions in their published papers20,21 and the newest 
tutorial in https://kiharalab.org/emsuites/mainmast.php, a set of 𝐶𝛼 trace models are first generated by MAINMAST using 
different combinations of parameters. Then the top 500 models are selected based on the threading score to construct other 
atoms by PULCHRA18. Finally, the full-atom models are refined by MDFF9,10, and the final model is determined according 
to the energy score of MDFF. 
 
Supplementary Text 7. Reasons for the better performance of DEMO-EM over other methods 

There are several reasons for the better performance of DEMO-EM over MDFF, Rosetta, and MAINMAST. First, the 
quick quasi-Newton searching process in combination with a space enumeration algorithm as taken by DEMO-EM (see 
Methods) can correctly match individual domains into the density map and thus generate optimal initial full-length models 
for the majority of proteins. As shown in Supplementary Fig. 5a, the average TM-score of initial full-length models 
constructed by the quasi-Newton search were 0.97 and 0.62 (where 99.2% and 68.8% had a TM-score >0.5) when starting 
with experimental and predicted domains, respectively, which are 14.1% and 17.0% higher than those by the start-of-the-art 
structure-map docking program Situs. This is probably because Situs is designed for the density map fitting of the 
macromolecular complexes mainly on the contour information extracted by the Laplacian filter11. Compared to the big-size 
complexes, the structure of individual domains is relatively small and some of the domains are buried inside the density map 

https://kiharalab.org/emsuites/mainmast.php
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without high correlation to the contour of the density map, which makes it difficult to correctly fit the domains into the 
density map through the contour match. Meanwhile, many of the predicted domain models have poor local structures 
including surfaces, although they may have a correct fold, which also impacts the accuracy of the contour-based model 
fitting. In contrast, DEMO-EM takes a L-BFGS based searching algorithm which enables the model fitting based on the 
density correlation between the domain model and density map; this has a more robust correlation with the global fold and is 
less sensitive to the local structure and contour errors. In Supplementary Fig. 6, we present two examples, one being a 
4-domain protein (PDBID: 1z1wA) with model built from experimental domain structure and another being a 3-domain 
protein (PDBID: 1zy9A) from D-I-TASSER predicted domain structure. Due to the large domain size and the low-quality 
domain models, respectively, Situs created incorrect fits for several domains and resulted in poor RMSDs (28.2 Å and 18.0 
Å) of the overall models, while the DEMO-EM domain search on model-map correlations generated much closer matches 
with RMSD=0.1 and 3.3 Å, respectively, for the two proteins. The quality of the initial models created at this step can have 
an important impact on the final refined models since the energy landscape of the refinement force field usually has a funnel 
shape and can only refine the models close to the correct positions22. For example, most of the final models with 
TM-score >0.7 refined by MDFF and Rosetta are from these cases with starting models also have TM-score >0.7 
(Supplementary Fig. 7). As MDFF, Rosetta, and MAINMAST mainly focus on the high-resolution density map refinement 
or modeling, we also show a head-to-head comparison of TM-scores between DEMO-EM and MDFF, Rosetta, and 
MAINMAST for the cases with resolutions of density maps ranging from 2 to 5Å in Supplementary Figs. 4f-4h. These 
figures indicate that DEMO-EM outperforms MDFF, Rosetta, and MAINMAST on >89% of the proteins with the relatively 
high-resolution density maps. 

Second, DEMO-EM took a hierarchical process of rigid-body and flexible model assembly simulations to progressively 
refine the multi-domain structures. In particular, the rigid-body domain assembly process can quickly adjust domain poses 
based on density maps. When starting with the predicted domains, for example, the average TM-scores of full-length models 
were improved from 0.62 to 0.75 where the number of cases with TM-score >0.5 increases from 68.8% to 85.4% after the 
rigid-body assembly step (Supplementary Fig. 5b). This domain model improvement helps the subsequent DEMO-EM 
steps to detect unreasonably folded regions in initial full-length models for more efficient atomic-level structural assembly 
and refinement simulations. Compared to de novo methods, the rigid-body assembly of DEMO-EM using the predicted 
domain models created an initial model with correct topology for most of the proteins, even for the cases with low resolution 
density maps, while modeling of low resolution density maps is usually hard for de novo methods23. For example, most of 
models constructed by MAINMAST with TM-score >0.5 are the targets with resolutions of density maps <5.0Å (Fig. 2e). 

The last important advantage of DEMO-EM comes from the flexible assembly and refinement stage, which showed a 
high ability to improve full-length models and individual domain models simultaneously with the assistance of deep-learning 
based inter-domain distances predictions when coupled with density-map correlation and inherent DEMO-EM force field. To 
examine the efficiency of the flexible assembly and refinement process, we feed the same full-length models assembled by 
the DEMO-EM rigid-body assembly step on the predicted domains into MDFF and Rosetta. Although the better starting 
model quality resulted in a considerable improved final model for both MDFF and Rosetta, which have the average 
TM-score of 0.81 and 0.79 respectively, the overall quality is still worse than that of DEMO-EM with an average TM-score 
0.85 (Supplementary Table 4). Compared to the rigid-body assembled models, the last stage of DEMO-EM simulations 
improved the TM-score by 13.3%, which is 66.7% higher than that by MDFF (8.0%) and 150% higher than that by Rosetta 
(5.3%), and DEMO-EM has more models with TM-score >0.9 (Supplementary Fig. 5c). The average structure refinement 
time spent by DEMO-EM is 2.40 h, which is comparable to Rosetta (2.36 h) but more than two-fold shorter than MDFF 
(5.51 h) (see Supplementary Table 4). These results demonstrate the efficiency of the atomic-level domain structure 
refinement of DEMO-EM even starting from the same full-length models. 
 
Supplementary Text 8. Examples showing the construction process of DEMO-EM 

In Figs. 3b and 3c, we present two illustrative examples showing the construction process of DEMO-EM. For the 
cation-independent mannose 6-phosphate receptor (PDBID: 1q25A), a protein with 3 domains using a simulated density 
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map with a low resolution of 9.9 Å (Fig. 3b), two domains from N- and C-terminus were initially assigned into the same 
map space as they shared a similar fold with TM-score of 0.88; this resulted in a low TM-score=0.63 of full-length model. 
Guided by the global model-density correlation and particle movements implemented in the rigid-body assembly step, the 
incorrect domain fit was corrected with the full-length TM-score improved to 0.87. After the flexible assembly and 
refinement simulations, almost all wrong folding regions in the model were corrected which resulted in a global 
TM-score=0.96 and RMSD=1.9 Å. Again, the average TM-score/RMSD of the individual domains were significantly 
improved in this example from 0.82/3.0Å to 0.95/1.0Å, respectively. 

Figure 3c shows another example from human xanthine oxidoreductase mutant F3 (PDBID: 2e1qC), a complex protein 
with 8 continuous domains and 2 discontinuous domains (one of them has three discontinuous segments) using a simulated 
density map with a medium resolution of 5.3 Å. One of the domains was initially docked into an incorrect region in the 
quasi-Newton based search, resulting in a suboptimal full-length TM-score of 0.89 and RMSD=5.4 Å. After the second step 
of rigid-body assembly, the domain was moved to the correct map space but still with some regions stretched outside the 
maps in several domains and have the model with a TM-score to 0.95 and RMSD=3.8 Å. At the last step, the flexible 
simulations refined the overall quality including drawing the exposed loops into the density map, which resulted in a further 
improved model with TM-score=0.98 and RMSD=2.7 Å. In this case, model quality of the 10 individual domains is also 
improved with average TM-score/RMSD improved from 0.84/3.2Å to 0.95/1.6Å, respectively. 

In Supplementary Figure 8, we also present the full-length models created by MDFF, Rosetta, and MAINMAST for 
these two examples, which have a TM-score/RMSD equal to 0.16/39.1Å, 0.09/83.2Å, and 0.18/36.2 Å for 2e1qC, and 
0.38/21.2Å, 0.36/21.6Å, and 0.10/58.3Å for 1q25A, respectively; the low-quality models are mainly due to the initial 
full-length models with incorrect domain orientations for MDFF and Rosetta and low resolution maps for MAINMAST to 
distinguish the main chain. The results of these case studies reinforce the advantage of the DEMO-EM pipeline for 
assembling multi-domain protein complex structures. 
 
Supplementary Text 9. Benchmark set with experimental density maps 

To further examine the use of DEMO-EM on practical density maps, we collected a set of 51 non-redundant 
multi-domain proteins from EMDB that have experimental density map with resolution ranging from 2.9 to 10 Å 
(Supplementary Fig. 9a and Supplementary Table 5). The size of these proteins ranges from 144 to 1,664 residues with 
the number of domains ranging from 2 to 8. To emulate the common real-life scenarios where the domain structures of target 
proteins are unknown, we predict the domain boundaries from sequence by a deep-learning contact-based program FUpred24 
and a threading template-based method ThreaDom25 (see Methods). The individual domain structures modelled by 
D-I-TASSER with all homologous templates of a sequence identity >30% to the query have been excluded. 
 
Supplementary Text 10. Impact of the domain assignment and map segmentation on the accuracy of the final model 

To further study the impact of the map segmentations on the accuracy of the final model, we also reassembled all 51 
test cases by DEMO-EM using the full density maps. As shown in Supplementary Fig. 11a, the average TM-score (0.86) is 
comparable to that using segmented density maps (0.88), where the difference corresponds to a Student’s t-test p-value of 0.3. 
For the domain-level models, the change on the average TM-score is also not significant (0.82 vs. 0.84), corresponding to a 
Student’s t-test p-value of 0.2 (Supplementary Fig. 11b). This result is largely because the domain-map matching and 
domain rigid-body assembly procedure in DEMO-EM can correctly determine the position of each domain in the density 
map. Meanwhile, the comprehensive energy function from the inter-domain distance profile and the domain structure 
restraints can further prevent the global topology deviating too much away from the correct domain orientations even with 
full density maps. There are indeed a few cases (including 4vlmC and 6n89A) with TM-score of domain model and 
full-length model obviously decreased (Supplementary Fig. 11). For all these cases, there are at least one domain whose 
structure was incorrectly predicted by D-I-TASSER, which makes the domain-map match more difficulty in a larger map, 
where the incorrect domain-map match further impacts the cryo-EM based domain assembly and refinement simulations. 
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Although full density map-based search may help amend the domain-map match for some of these cases, this will increase 
the overall running time of the DEMO-EM. 

We also investigated the impact of the incorrect domain assignment on the final model by reconstructing the model of 
the 8 cases, which have the predicted number of domains not consistent with that of DomainParser, using the domain 
definitions determined by DomainParser. The results show that the use of correct domain definition can indeed improve the 
modeling accuracy with TM-score increased from 0.836 to 0.845 for full-length models and from 0.769 to 0.772 for 
domain-level models; but the difference is not dramatic. One reason is that the domain boundary definition is not always 
absolute and some of the DEMO-EM predictions have provided a reasonable alternative (see Supplementary Figs. 12a-c). 
On the other hand, the highly efficient rigid-body domain reassembly step of DEMO-EM can often amend the incorrectly 
assigned initial domain positions under the guidance the experimental density maps (see Supplementary Figs. 12d-g). 

For example, the protein (3j1fA) shown in Supplementary Fig. 12a was split into 2 domains by DomainParser, while 
one of the domains was further divided into 2 domains by DEMO-EM and results in 3 domains (Supplementary Fig. 12b). 
However, both the experimental and predicted inter-residue contact map show that these two domain definitions are 
reasonable since there are very few inter-domain contacts (Supplementary Fig. 12c). In another example, the protein (3jb9B) 
shown in Supplementary Fig. 12d was split into 4 domains by DomainParser, while two of the domains determined by 
DomainParser (Supplementary Fig. 12d) were further split into two small domains (Supplementary Fig. 12e) by 
DEMO-EM because there are few inter-domain contacts in the predicted contact map (Supplementary Fig. 12f). 
Supplementary Fig. 12g shows the three stages of the DEMO-EM process for this case. Although D-I-TASSER was able to 
create correct domain models with an average TM-score=0.88, the three small domains were fit into the wrong positions, 
resulting in an initial model with TM-score =0.42, because positions of small domains are usually more difficult to identify 
in the whole density map compared to large domains. However, the incorrect domain fit was corrected in the density map 
guided rigid-body domain assembly step, resulting in a full-length model with TM-score improved to 0.92; the TM-score 
was increased to 0.95 after the flexible domain assembly and refinement. 
 
Supplementary Text 11. Validation scores of DEMO-EM models for proteins from SARS-CoV-2 genome 
 We also compared the validation scores of DEMO-EM models with that of the deposited models for all proteins in 
SARS-CoV-2 genome. On average, DEMO-EM models contain more ‘Ramachandran favored’ residues, less rotamer outliers 
and clashes (Supplementary Table 8), which result in a lower MolProbity score (0.92) compared to that of deposited 
models (1.71). Looking at the results on each case, the MolProbity score of DEMO-EM model is lower than that of 
deposited model on all 6 cases, partly because DEMO-EM model includes much less clashes. In terms of EMringer score, 
DEMO-EM has 4 out of 6 cases higher than the deposited model, indicating DEMO-EM model achieves better model 
geometry and density-fit at side-chain level. However, the overall iFSC of DEMO-EM model is dropped compared to that of 
the deposited model on 3 out of 6 cases. To investigate the possible reason, we calculated the Q-score and FSC-Q27 to 
evaluate the local quality of all proteins. The result indicates that the DEMO-EM model achieves higher average Q-score 
than the deposited model for all cases. Particularly for the 3 cases which have the iFSC dropped in the DEMO-EM model, 
the DEMO-EM models have >72% residues obtaining higher Q-score than deposited models (Supplementary Figs. 16a-c). 
For the case (6vsbC) that has deposited half maps, most of the residues (68.9%) of the DEMO-EM model obtain better 
FSC-Q than that of the deposited model (Supplementary Fig. 16d). For example, Supplementary Fig. 16e shows an 
example residue (THR-998) of 6vsbC, in which all atoms of the deposited model were fit into the density map but obtain a 
negative FSC-Q score. Therefore, we envision that the higher iFSC scores for the deposited models in these cases, for which 
DEMO-EM model have better model geometry and local quality, are probably because of the overfitting in some local 
regions of the deposited models. The DEMO-EM models for all the SARS-CoV-2 proteins are downloadable at 
https://zhanggroup.org/DEMO-EM/data_set/model_sarscov2.tar.gz. 
  

https://zhanggroup.org/DEMO-EM/data_set/model_sarscov2.tar.gz
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Supplementary Figures 
 

 
 
Supplementary Figure 1 
 
The proportion of multi-domain proteins in protein chains in the PDB and the proportion of released cryo-EM maps with 
associated atomic models in EMDB. 
 
(a) Distribution of multi-domain proteins in protein chains in the entire PDB. (b) Distribution of multi-domain proteins in 
protein chains determined by cryo-EM, where domain boundaries determined by CATH database3 and DomainParser1. Here, 
we just show proteins with number of domains less than 10. (c) Distribution of resolutions for all released cryo-EM density 
maps and maps have corresponding atomic structures in EMDB. 
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Supplementary Figure 2 
 
Initial information of the 357 test multi-domain proteins 
 
(a) Distribution of resolutions for simulated density maps. (b) Distribution of TM-scores for all domain models predicted by 
D-I-TASSER. 
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Supplementary Figure 3 
 
The relationship between the quality of initial data (TM-score of model by rigid-body assemble and map resolution) 
and the improvement of individual domain models by DEMO-EM flexible assembly for the 357 test multi-domain 
proteins. 
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Supplementary Figure 4 
 
Summary of models generated by MDFF9, Rosetta19, and MAINMAST20,21 using synthesized density maps for the 357 
proteins, where initial full-length models of MDFF and Rosetta are created by Situs11. 
 
(a) Head-to-head comparison between TM-scores of final models built by DEMO-EM and MDFF. (b) Head-to-head 
comparison between TM-scores of final models built by DEMO-EM and Rosetta. (c) Head-to-head comparison between 
TM-scores of final models built by DEMO-EM and MAINMAST. (d) Head-to-head comparison between TM-scores of 
initial individual domain models and the corresponding domain models in final full-length models by MDFF. (e) 
Head-to-head comparison between TM-scores of initial domain individual models and the corresponding domain models in 
final full-length models by Rosetta. (f) Head-to-head comparison between TM-scores of final models built by 
DEMO-EM and MDFF for cases with resolutions of density maps ranging from 2 to 5Å. (g) Head-to-head comparison 
between TM-scores of final models built by DEMO-EM and Rosetta for cases with resolutions of density maps 
ranging from 2 to 5Å. (h) Head-to-head comparison between TM-scores of final models built by DEMO-EM and 
MAINMAST for cases with resolutions of density maps ranging from 2 to 5Å. In (f-h), larger size symbols indicate 
cases with lower resolution density maps. 
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Supplementary Figure 5 
 
Summary of models generated by domain matching, rigid-body assembly of DEMO-EM, and refinement or constructed by 
different methods for the 357 test proteins. 
 
(a) Head-to-head comparison between TM-scores of initial full-length models generated by independently fitting each 
domain into density maps using DEMO-EM versus that created by Situs using the same domain models. (b) Head-to-head 
comparison between TM-scores of initial full-length models from domain-map fitting versus that of rigid-body assembled 
models by DEMO-EM. (c) Distribution of the TM-scores of models refined by DEMO-EM, MDFF, and Rosetta from the 
full-length models assembled by DEMO-EM in rigid-body using the predicted domain models, and distribution of the 
TM-scores of models created by MAINMAST. 
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Supplementary Figure 6 
 
Examples showing initial full-length models constructed by independently matching each domain into the density map by 
Situs and DEMO-EM, where different domains are labeled with different colors. 
 
(a) Initial models generated by domain matching through Situs and DEMO-EM for a 4-domain protein (PDBID: 1z1wA) 
using experimentally determined domain structures. (b) Initial models generated by domain matching through Situs and 
DEMO-EM for a 3-domain protein (PDBID: 1zy9A) using D-I-TASSER predicted domain models, where the TM-scores are 
0.76, 0.88, and 0.60 for red, blue, and green domains, respectively. 
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Supplementary Figure 7 
 
The correlation between the TM-score of initial model and that of final model by MDFF and Rosetta for the 357 test 
multi-domain proteins. 
 
(a) Head-to-head comparison between TM-scores of final models generated by MDFF and TM-scores of its starting 
models by Situs. (b) Head-to-head comparison between TM-scores of final models generated by Rosetta and 
TM-scores of its starting models by Situs. 
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Supplementary Figure 8 
 
Examples to show models refined by MDFF and Rosetta starting from full-length models generated by Situs and the de novo 
model created by MAINMAST. 
 
(a), (b), and (c) Models of 2e1qC created by Rosetta, MDFF, and MAINMAST, respectively. (d), (e), and (f) Models of 
1q25A created by Rosetta, MDFF, and MAINMAST, respectively. 
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Supplementary Figure 9 
 
Initial information for the 51 cases with experimental density maps. 
 
(a) Distribution of resolutions for density maps. (b) Distribution of TM-scores for domain models generated by 
D-I-TASSER. 
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Supplementary Figure 10 
 
Runtime of DEMO-EM for the 51 cases with experimental density maps. Here, the runtime contains processing time of the 
whole pipeline of DEMO-EM when starting from the sequence and cryo-EM density map. 
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Supplementary Figure 11 
 
Comparison of the results of DEMO-EM for the 51 cases when using segmented density maps and full density maps. 
 
(a) TM-scores of final full-length models generated by DEMO-EM. (b) TM-scores for domain models of final full-length 
models created by DEMO-EM. 
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Supplementary Figure 12 
 
Representative examples that the predicted number of domains is inconsistent with that determined by DomainParser using 
native model. 
 
(a, d) Domain definitions determined by DomainParser and shown in the native structure for protein 3j1fA (a) and 3jb9B (d), 
where different domains represented by different colors. (b, e) DEMO-EM predicted domain definitions shown in the native 
structure for protein 3j1fA (b) and 3jb9B (e). (c, f) Native (gray) and predicted (red) contact maps for protein 3j1fA (c) and 
3jb9B (f), where colored solid squares indicate the predicted domain boundaries by DEMO-EM. (g) The process of the 
DEMO-EM assembly for protein 3jb9B. 
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Supplementary Figure 13 
 
Comparison of final models generated by different methods for the 51 cases with experimental density maps. 
 
(a) Head-to-head comparison between TM-scores of final model generated by DEMO-EM and that by MDFF using 
D-I-TASSER predicted domain models. (b) Head-to-head comparison between TM-scores of final model generated by 
DEMO-EM and that by Rosetta using D-I-TASSER predicted domain models. (c) Head-to-head comparison between 
TM-scores of final model generated by DEMO-EM and that by MAINMAST. 
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Supplementary Figure 14 
 
Performance analysis of different methods on the 51 cases with experimental density maps. 
 
(a) Correlation between the TM-score of the final model and the resolution of density map for different methods. (b) 
Validation scores of final models generated by different methods. The box represents the lower to upper quartiles of the 
scores; the horizontal line and square in the box represent the median and mean, respectively; the whiskers indicate the 5th 
and 95th percentiles; the solid star and hollow star are the maximum and minimum values. 
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Supplementary Figure 15 
 
Representative examples to show DEMO-EM constructed models using experimental density maps. 
 
(a) 6enyD (EMD-3906), a protein with 4 continuous domains, where different domains represented by different colors. (b) 
5fj6A (EMD-3186), a protein with two continuous domains and one discontinuous domain (green). (c, d) Q-score of the 
backbone atom showing in the deposited model (c) and DEMO-EM model (d) for 6enyD, where blue and red indicate the 
minimum (-1) and maximum (1) Q-score, respectively. (e, f) Q-score showing in the deposited model (e) and DEMO-EM 
model (f) for 5fj6A. It should be noted that only the Q-score of the backbone atoms of 6enyD was calculated because the 
deposited model only has the backbone atoms. The DEMO-EM models for all the test proteins are available at 
https://zhanggroup.org/DEMO-EM/data_set/benchmark51. 
 
  

https://zhanggroup.org/DEMO-EM/data_set/benchmark51


25 
 

 
Supplementary Figure 16 
 
FSC-Q and Q-score of the cases that DEMO-EM models have lower iFSC than deposited models. 
 
(a, b, c) The average Q-score of each residue of the deposited model (blue) and DEMO-EM model (red) for 6vsbC (a), 
6yytA (b), and 6yytB (v). (d) The average absolute FSC-Q of each residue of the deposited model (blue) and DEMO-EM 
model (red) for 6vsbC. The lower FSC-QR indicates better fitting, while the higher Q-score corresponds better fitting. (e)  
Representative residue (THR-998) of 6vsbC, in which all atoms were fitted into the density map but get a negative FSC-Q. 
Here, we only report the FSC-Q of the protein with deposited half maps or effective half maps for FSC-Q calculation. 
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Supplementary Figure 17 
 
Representative examples to show structures of protein complexes constructed by DEMO-EM 
 
(a) SARS-CoV-2 spike protein complex (EMD-21375), where different colors indicate different chains. (b) SARS-CoV-2 
replication-transcription complex (EMD-22160). (c) SARS-CoV-2 ORF3a complex (EMD-22136). (d) SARS-CoV-2 
RNA-dependent RNA polymerase (EMD-11007). It should be noted that some regions are not include in the map because 
we build the structure of the full-length chain even the density data is missed for some residues. 
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Supplementary Figure 18 
 
Outline of DomainDist for predicting histograms of inter-domain and intra-domain residue-pair distances using 
deep-learning based neural networks. 
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Supplementary Figure 19 
 
Matching domain models into cryo-EM density maps 
 
(a) The pipeline of domain structure matching into cryo-EM density maps in DEMO-EM. (b) Enumeration of initial position 
determination for a domain model. To eliminate redundant positions, we set the minimum distance between two neighboring 
positions, 𝑟 = max (0.5𝑟𝑚, 𝑟0), where 𝑟𝑚 is the radius of gyration of the model, and 𝑟0 = 5Å is the minimum distance 
between two initial positions. To remove the edge positions, the maximum distance between each initial position and the 

center point of the density map is set as 𝑅eg = min (max(1.1(𝑟𝑣 − 𝑟𝑚), 𝑟0) , 𝑟𝑣), where 𝑟𝑣=�(∑ (𝒗𝑖 − 𝒗center)2)𝑁vol
′

𝑖=1 𝑁vol′�  
is the radius of gyration of the density map calculated by the 𝑁vol′  voxels with density ≥0.05 after normalizing density 

values to the range of 0 and 1, and 𝒗center = 1
𝑁vol
′ ∑ 𝒗𝑗

𝑁vol
′

𝑗=1  is the center point of these voxels. 
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Supplementary Figure 20 
 
Movements for the rigid-body domain assembly. 
 
(a) Random rigid-body rotation around the domain’s center of mass. (b) Random rigid-body translation of the domain’s 
center of mass. (c) Random rigid-body rotation around the axis connecting the domain’s N- and C-terminal 𝐶𝛼 atoms. (d) 
Rigid-body translation along the axis connecting two domains which are neighboring in sequence. (e) Pose exchange 
between two domains with similar structures. 
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Supplementary Figure 21 
 
Comparison the statistical minimum radius of gyration with the real values. 
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Supplementary Figure 22 
 
Illustration of domain boundary distance potential for a two-domain protein with discontinuous domains. The discontinuous 
domain (Domain-I) is split into two segments due to the insertion of the continuous domain (Domain-II). 𝑑1 and 𝑑2 are 
𝐶𝛼-distances. 
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Supplementary Figure 23 
 
Movements for the flexible domain assembly and refinement. 
 
(a) LMProt28 perturbation. (b) Segment rotation around the axis connecting two termini of the segment. (c) Conformational 
shift of segments along the sequence. (d) Rigid-body segment translation. (e) rigid-body tail rotation. (f) Rigid-body 
domain-level translation and rotation. 
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Supplementary Figure 24 
 
Example of regions determination for remodeling and refinement. 
 
(a)The local density correlation score of each residue in an example protein (PDB 1wv3A) and the corresponding probability 
of each residue to be selected for remodeling. (b) The 3D structure of 1wv3A superposed into the density map, where red 
regions are residues with local density score <0.05. 
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Supplementary Figure 25 
 
Definition of H-O distance, inner angles, and torsion angle for hydrogen-bond. 
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Supplementary Tables 
 

Supplementary Table 1. Results of final models constructed from experimental domain structures on 357 test proteins 
using simulated density maps. 
 

 Method TM-score RMSD (Å) 

2doma 

(N=166) 

MDFF 0.91(0.14) 4.6(6.8) 
Rosetta 0.86(0.18) 4.8(6.7) 

DEMO-EM 0.99(0.01) 0.5(0.3) 

2disb 
(N=81) 

MDFF 0.89(0.17) 4.3(5.7) 
Rosetta 0.85(0.17) 5.4(6.6) 

DEMO-EM 0.99(0.01) 0.6(0.4) 

3domc 
(N=69) 

MDFF 0.79(0.20) 10.1(9.0) 
Rosetta 0.72(0.25) 11.0(9.5) 

DEMO-EM 0.99(0.01) 0.7(0.3) 

m4domd 
(N=41) 

MDFF 0.67(0.23) 17.9(11.0) 
Rosetta 0.55(0.31) 21.9(14.1) 

DEMO-EM 0.99(0.00) 0.8(0.5) 

All 
(N=357) 

MDFF 0.86(0.20) 7.1(9.5) 
Rosetta 0.79(0.23) 8.1(9.9) 

DEMO-EM 0.99(0.00) 0.6(0.3) 
The former value is the average, while the value in parentheses is the standard deviation. Bold font highlights the best results 
from each category. 
a protein with 2 domains. 
b protein with discontinuous domain which contains 2 or more segments from separate regions of the query sequence. 
c protein with 3 domains. 
d protein with 4 or more domains. 
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Supplementary Table 2. Results of final models constructed from D-I-TASSER predicted domain models using simulated 
density maps. 
 

 Method TM-score RMSD(Å) TM-score 
(domain)a 

RMSD(Å) 
(domain)b 

2dom 

(N=166) 

MDFF 0.57(0.23) 15.3(8.1) 0.65(0.19) 5.5(3.4) 
Rosetta 0.52(0.21) 16.9(8.6) 0.52(0.23) 7.9(5.9) 

MAINMAST 0.38(0.28) 16.4(8.2) 0.35(0.19) 13.1(7.0) 
DEMO-EM 0.87(0.16) 4.8(5.0) 0.85(0.16) 3.5(3.5) 

2dis 
(N=81) 

MDFF 0.56(0.21) 15.4(7.6) 0.63(0.18) 6.9(4.7) 
Rosetta 0.49(0.20) 18.6(7.3) 0.47(0.21) 10.1(5.8) 

MAINMAST 0.32(0.25) 20.2(9.0) 0.30(0.24) 15.8(7.6) 
DEMO-EM 0.80(0.18) 7.9(5.8) 0.78(0.19) 5.9(5.2) 

3dom 

(N=69) 

MDFF 0.50(0.20) 17.5(8.2) 0.64(0.19) 5.3(3.2) 
Rosetta 0.36(0.20) 25.6(10.6) 0.40(0.20) 10.7(7.4) 

MAINMAST 0.35(0.25) 18.2(7.7) 0.31(0.24) 12.9(6.6) 
DEMO-EM 0.87(0.15) 4.7(4.4) 0.85(0.15) 2.9(2.6) 

m4dom 

(N=41) 

MDFF 0.39(0.25) 23.2(9.8) 0.57(0.21) 6.2(3.8) 
Rosetta 0.27(0.23) 36.1(10.3) 0.47(0.27) 10.9(9.0) 

MAINMAST 0.31(0.23) 22.2(9.0) 0.25(0.21) 13.1(5.9) 
DEMO-EM 0.83(0.21) 8.5(9.2) 0.83(0.18) 3.2(3.4) 

All 
(N=357) 

MDFF 0.53(0.23) 16.6(8.2) 0.63(0.22) 5.9(3.9) 
Rosetta 0.45(0.21) 21.2(10.9) 0.48(0.26) 9.3(7.1) 

MAINMAST 0.35(0.26) 18.3(8.6) 0.32(0.25) 13.7(6.9) 
DEMO-EM 0.85(0.18) 5.9(6.1) 0.83(0.16) 3.9(3.8) 

The former value is the average, while the value in parentheses is the standard deviation. Bold font highlights the best results 
from each category. 
a TM-score of individual domain models in full-length models. 
b RMSD of individual domains models in full-length models. 
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Supplementary Table 3. Validation scores of final models constructed from D-I-TASSER predicted domain models using 
simulated density maps. 
 

 Method Ramachandran 
favored (%) 

Rotamer 
outliers (%) Clash score Molprobity 

score 
EMringer 

score iFSC 

2dom 

(N=166) 

MDFF 66.98(10.87) 19.01(8.31) 106.30(55.08) 4.34(0.52) 1.20(0.92) 0.49(0.16) 
Rosetta 85.75(5.50) 0.95(2.07) 15.04(10.33) 2.28(0.45) 1.23(0.84) 0.37(0.18) 

MAINMAST 38.2(14.76) 41.3(16.09) 587.86(572.19) 5.15(0.56) 1.35(0.87) 0.44(0.16) 
DEMO-EM 91.25(3.69) 1.05(0.93) 2.48(3.30) 1.47(0.52) 1.44(0.71) 0.67(0.15) 

2dis 
(N=81) 

MDFF 65.70(7.38) 19.33(7.93) 105.89(52.08) 4.35(0.52) 1.18(1.05) 0.52(0.14) 
Rosetta 83.95(6.07) 2.65(6.24) 42.86(106.55) 2.53(0.74) 1.26(1.06) 0.39(0.20) 

MAINMAST 38.48(12.44) 45.86(8.80) 474.57(335.75) 5.19(0.56) 0.95(0.73) 0.47(0.14) 
DEMO-EM 90.17(4.55) 1.67(1.17) 4.84(4.81) 1.78(0.60) 2.02(1.34) 0.65(0.18) 

3dom 

(N=69) 

MDFF 63.57(10.17) 23.01(8.26) 107.36(53.74) 4.42(0.41) 1.07(0.93) 0.42(0.16) 
Rosetta 84.64(5.33) 0.73(0.61) 21.39(52.93) 2.32(0.44) 1.19(0.87) 0.27(0.17) 

MAINMAST 35.04(10.07) 39.36(16.96) 781.56(838.44) 5.22(0.47) 1.03(0.62) 0.42(0.17) 
DEMO-EM 91.77(3.73) 1.04(0.79) 2.89(2.27) 1.62(0.51) 1.20(0.86) 0.69(0.13) 

m4dom 

(N=41) 

MDFF 61.78(8.16) 23.22(7.89) 107.13(41.67) 4.53(0.23) 0.99(0.55) 0.36(0.17) 
Rosetta 83.95(3.43) 0.86(0.66) 136.97(227.34) 2.62(0.70) 0.84(0.51) 0.20(0.12) 

MAINMAST 45.29(18.87) 35.42(20.98) 841.53(642.82) 5.15(0.60) 0.86(0.53) 0.42(0.19) 
DEMO-EM 90.52(4.84) 1.09(0.87) 3.99(5.58) 1.84(0.64) 1.05(0.45) 0.65(0.20) 

All 
(N=357) 

MDFF 65.44(10.88) 20.30(8.20) 106.51(52.88) 4.38(0.48) 1.15(1.06) 0.47(0.16) 
Rosetta 84.92(7.07) 1.29(3.38) 36.58(50.69) 2.38(0.58) 1.18(0.91) 0.34(0.19) 

MAINMAST 38.45(14.45) 41.28(16.17) 628.73(611.72) 5.17(0.72) 1.14(0.76) 0.44(0.16) 
DEMO-EM 91.02(4.07) 1.19(0.99) 3.27(3.96) 1.61(0.57) 1.48(0.98) 0.67(0.16) 

The former value is the average, while the value in parentheses is the standard deviation. Bold font highlights the best results 
from each category. 
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Supplementary Table 4. Refinement results for the full-length models generated by the rigid-body assembly of DEMO-EM 
using D-I-TASSER predicted domain structures. 
 

Method TM-score RMSD(Å) TM-score 
(domain) 

RMSD(Å) 
(domain) 

Molprobity 
score 

EMringer 
score iFSC Time(h) 

Initial Modela 0.75(0.19) 8.4(6.8) 0.77(0.14) 4.6(3.6) 2.78(0.69) 1.05(0.68) 0.38(0.17) NA 
MDFF-DEMO-EMb 0.81(0.21) 7.5(7.6) 0.79(0.19) 4.3(4.0) 2.18(0.57) 1.32 (1.15) 0.61(0.18) 5.51(5.95) 
Rosetta-DEMO-EMc 0.79(0.20) 7.4(7.7) 0.76(0.20) 4.5(4.4) 1.96(0.52) 1.26(0.84) 0.63(0.15) 2.36(3.02) 

DEMO-EM 0.85(0.18) 5.9(6.1) 0.83(0.16) 3.9(3.8) 1.61(0.57) 1.48(0.98) 0.67(0.16) 2.40(3.05) 
The former value is the average, while the value in parentheses is the standard deviation. Bold font highlights the best results 
from each category. 
a Full-length models generated by the rigid-body assembly of DEMO-EM. 
b MDFF refinement for the full-length models by the rigid-body assembly of DEMO-EM. 
c Rosetta refinement for the full-length models by the rigid-body assembly of DEMO-EM. 
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Supplementary Table 5. The 51 proteins with experimental cryo-EM density maps from EMDB 
 

EMDB code Resolution(Å) EMDB code Resolution(Å) 
EMD-20749 2.9 EMD-9389 6.7 
EMD-20959 3.3 EMD-5245 6.7 
EMD-0782 3.4 EMD-7093 7.2 
EMD-21377 3.94 EMD-2183 7.2 
EMD-0346 4 EMD-3202 7.3 
EMD-10215 4.1 EMD-7461 7.4 
EMD-10215 4.1 EMD-0367 7.5 
EMD-10100 4.15 EMD-20724 7.5 
EMD-6413 4.28 EMD-5784 7.5 
EMD-20784 4.3 EMD-1180 7.7 
EMD-8002 4.3 EMD-6102 7.7 
EMD-2867 4.3 EMD-20114 7.8 
EMD-9109 4.5 EMD-6207 7.8 
EMD-9163 4.71 EMD-3186 7.9 
EMD-3048 4.9 EMD-1999 8 
EMD-4441 5.2 EMD-4156 8 
EMD-7343 5.8 EMD-0773 8.1 
EMD-3906 5.8 EMD-0491 8.5 
EMD-3906 5.8 EMD-0293 8.6 
EMD-3049 6 EMD-2598 8.75 
EMD-2484 6 EMD-4671 9.1 
EMD-5396 6.2 EMD-1569 9.1 
EMD-2845 6.47 EMD-2597 9.15 
EMD-2009 6.6 EMD-0876 9.58 
EMD-2009 6.6 EMD-4232 10 
EMD-2784 6.6   
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Supplementary Table 6. Comparison of the DEMO-EM models with the full-length models predicted by AlphaFold2, and 
comparisons of different refinement methods starting from the AlphaFold2 predicted models. 
 

Methods Quality for full-length models Quality for domain-level models 
TM-score RMSD (Å) TM-score RMSD (Å) 

AlphaFold2 0.84(0.16) 4.4(4.2) 0.89(0.09) 2.0(1.3) 
DEMO-EM 0.88(0.09) 4.2(3.2) 0.84(0.13) 3.2(2.8) 

MDFF-AlphaFold2a 0.89(0.14) 3.6(4.5) 0.86(0.12) 2.4(1.3) 
Rosetta-AlphaFold2b 0.88(0.15) 3.8(4.7) 0.85(0.11) 2.5(1.2) 

DEMO-EM-AlphaFold2c 0.93(0.07) 2.5(1.7) 0.90(0.09) 1.8(1.1) 
The former value is the average, while the value in parentheses is the standard deviation. Bold font highlights the best results 
from each category. 
a MDFF refinement using initial full-length models generated by AlphaFold2. 
b Rosetta refinement using initial full-length models built by AlphaFold2. 
c DEMO-EM refinement using initial full-length models built by AlphaFold2. 
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Supplementary Table 7. Domain definitions of the 6 proteins in SARS-CoV-2 genome by FUpred24 and ThreaDom25. 
Different domains are separated by semicolons, and different segments of the discontinuous domain are separated by 
commas. 
 

EMD code Resolution(Å) PDB code Domain definition 

EMD-21375 3.46 6vsbC 1-290;291-320,591-700;321-327,529-590;328-528; 
701-717, 1072-1146; 718-1071; 

EMD-11007 2.9 6yytB 1-125;126-198; 
EMD-22160 3.5 6xezE 1-100;101-235;236-439;440-605; 
EMD-22136 2.9 6xdcA 1-141;142-284; 
EMD-11007 2.9 6yytC 1-83; 
EMD-11007 2.9 6yytA 1-265;266-388;389-407,445-812;408-444,813-932; 
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Supplementary Table 8. Comparison of validation scores between models generated by DEMO-EM and deposited models 
for the 6 proteins in SARS-CoV-2 genome. 
 

PDB 
code 

Rama 
favored (%) 

Rotamer 
outliers (%) Clashscore MolProbity 

score 
EMringer 

score iFSC Q-score 

6vsbC 95.87(94.50) 1.41(0.64) 0.07(12.11) 0.93(1.97) 2.04(2.35) 0.42(0.45) 0.57(0.53) 

6yytB 95.11(97.83) 0.63(0.00) 0.00(3.23) 0.84(1.15) 1.67(1.39) 0.45(0.49) 0.53(0.50) 

6xezE 89.56(87.04) 3.07(9.96) 0.32(24.48) 1.55(3.26) 1.08(1.21) 0.34(0.33) 0.46(0.41) 

6xdcA 96.30(96.30) 1.15(1.15) 0.32(4.15) 0.91(1.49) 3.60(3.58) 0.57(0.57) 0.64(0.61) 

6yytC 100(100) 0.00(0.00) 0.00(3.47) 0.50(1.14) 1.95(1.77) 0.55(0.54) 0.63(0.60) 

6yytA 96.81(96.69) 0.40(0.53) 0.30(2.44) 0.81(1.24) 3.29(3.22) 0.44(0.50) 0.69(0.66) 

Average 95.52(95.39) 1.11(2.05) 0.17(8.31) 0.92(1.71) 2.27(2.25) 0.46(0.48) 0.59(0.55) 

The numbers in parentheses are for deposited models, and bold font highlights the best results. It should be noted that all 
scores of DEMO-EM are calculated based on those residues that are identical to deposited models. 
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Supplementary Table 9. Statistic values to determine coordinates of O, Cβ, H, and side-chain center of mass (SC) 
according to their relative positions to the three backbone atoms (N, Cα, and C), where D, T, and A indicate the distance, 
torsion angle, and inner angle, respectively. 
 

O𝑖 
𝑖 ∈ [1, 𝐿 − 1] 

D(O𝑖,C𝑖) (Å) 1.229 
H𝑖 

𝑖 ∈ [2, 𝐿] 

D(N𝑖,H𝑖) (Å) 0.987 
T(C𝛼𝑖,C𝑖,O𝑖,N𝑖+1) (°) 179.672 T(C𝑖−1,N𝑖,C𝛼𝑖, H𝑖) (°) 179.817 
A(C𝛼𝑖,C𝑖,O𝑖) (°) 120.098 A(H𝑖,N𝑖,C𝛼𝑖) (°) 119.255 

O𝑖 
𝑖 = 𝐿 

D(O𝑖,C𝑖) (Å) 1.244 
H𝑖 
𝑖 = 1 

D(N𝑖,H𝑖) (Å) 0.987 
T(C𝛼𝑖,C𝑖,O𝑖,N𝑖) (°) 0 T(C𝑖,N𝑖,C𝛼𝑖, H𝑖) (°) 60 
A(C𝛼𝑖,C𝑖,O𝑖) (°) 119.494 A(H𝑖,N𝑖,C𝛼𝑖) (°) 116.345 

Cβ Residue type specific: 
https://zhanggroup.org/DEMO-EM/potential/CB_position.txt 

SC Residue type specific: 
https://zhanggroup.org/DEMO-EM/potential/SG_position.txt 
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Supplementary Table 10. Van der Waals radius parameters from CHARMM2229 are used to count for excluded volume 
interaction. 
 

 C𝛼 N C O C𝛽 SC 
C𝛼 3.6 2.3 3.7 2.9 3.5 1.0 
N 3.7 2.5 3.5 2.5 3.5 1.0 
C 2.3 1.2 2.7 2.7 2.3 1.0 
O 2.5 2.1 2.4 2.3 2.6 1.0 
C𝛽 3.5 2.3 3.5 2.8 3.3 1.0 
SC 1.0 1.0 1.0 1.0 1.0 1.0 
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Supplementary Table 11. Mean and standard deviation of four hydrogen-bond features in α-helix and β-sheet structures. 
 

 𝐷(O𝑖 , H𝑗) (Å) 𝐴(C𝑖 , O𝑖 , H𝑗) (°) 𝐴(O𝑖 , H𝑗 , N𝑗) (°) 𝑇(C𝑖 , O𝑖 , H𝑗 , N𝑗) (°) 

Helix, j=i+4 2.00/0.53 147/10.58 159/11.25 160/25.36 

Helix, j=i+3 2.85/0.32 89/7.70 111/8.98 -160/7.93 

Parallel 2.00/0.30 155/11.77 164/11.29 180/68.96 

Antiparallel 2.00/0.26 151/12.38 163/11.02 -168/69.17 
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